X-ray Photoelectron Spectroscopy (XPS) was used to characterize the functional groups present on regenerated cellulose films after mild oxidation with TEMPO-NaBr-NaClO and the results were correlated with the adhesion forces holding together two wet cellulose films laminated with a thin (i.e. less than 10 mg/m 2 ) layer of polyvinylamine (PVAm). There was no correlation between adhesion and carboxyl content, whereas wet adhesion was proportional to the total content of aldehyde and hemiacetal groups on the cellulose. It is proposed that aldehyde groups react with neighboring cellulose chains to form hemiacetals which serve as crosslinks strengthening the cellulose surface. The hemiacetals can also be attacked by primary amines to give imine and aminal covalent linkages to the PVAm adhesive layer.
We propose that a testing procedure we call wet-peel significantly augments conventional wet paper testing when comparing wet-strength resin efficacy or the influence wood pulp fiber surface treatments on wet paper strength. A thin layer of wet-strength resin is sandwiched between a pair of thin, wet regenerated cellulose membranes to form a laminate, which is a physical model for fiber-fiber joints in paper. In the wet-peel method, the ninety-degree wet-delamination force gives a direct measure of adhesion in the wet cellulose-cellulose joint. Wet-peel measurements offer: 1) comparisons of wet-strength polymers at the same content of polymer in the laminate joint without the influences of varying fines contents, formation or paper density; 2) measurements of both the wet-strength of cured, dried joints, and the strength of never-dried joints (i. e. analogous to wet-web strength); 3) demonstrations of the influence of fiber surface chemistry modifications including oxidation and the presence of firmly bound polymers; and, 4) the evaluation of more exotic joint structures including layer-by-layer assemblies, microgels and colloidal polyelectrolyte complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.