Genetically encoded reporter constructs that yield fluorescently labeled fusion proteins are a powerful tool for observing cell biological phenomena, but they have limitations. Sortagging (sortase-mediated transpeptidation) is a versatile chemoenzymatic system for site-specific labeling of proteins with small (<2 kDa) probes. Sortagging combines the precision of a genetically encoded tag with the specificity of an enzymatic reaction and the ease and chemical versatility of peptide synthesis. Here we apply this technique to proteins in vitro and on the surface of living cells.
The unique reactivity of two sortase enzymes, SrtAstaph from Staphylococcus aureus and SrtAstrep from Streptococcus pyogenes, is exploited for site-specific labeling of a single polypeptide with different labels at its N and C termini. SrtAstrep is used to label the protein’s C terminus at an LPXTG site with a fluorescently labeled dialanine nucleophile. Selective N-terminal labeling of proteins containing N-terminal glycine residues is achieved using SrtAstaph and LPXT derivatives. The generality of N-terminal labeling with SrtAstaph is demonstrated by near-quantitative labeling of multiple protein substrates with excellent site specificity.
A new transition metal-based reaction has been developed for the selective modification of tryptophan residues on protein substrates. After activation of vinyl-substituted diazo compounds by Rh2(OAc)4, the resulting metallocarbenoid intermediates were found to modify indoles in aqueous media despite competing reactions with water. Both N- and 2-substituted indole products were observed in the reaction. Following initial small-molecule studies, the reaction was performed on two protein substrates. Both myoglobin and subtilisin Carlsberg were modified readily in aqueous solution, and the tryptophan selectivity of the reactions was confirmed through MS analyses of trypsin digest fragments. It was also demonstrated that myoblobin concentrations as low as 10 muM still led to appreciable levels of modification. Reconstitution experiments confirmed that myoglobin retained its ability to bind heme following modification.
Folding and stability are parameters that control protein behavior. The possibility of conferring additional stability on proteins has implications for their use in vivo and for their structural analysis in the laboratory. Cyclic polypeptides ranging in size from 14 to 78 amino acids occur naturally and often show enhanced resistance toward denaturation and proteolysis when compared with their linear counterparts. Native chemical ligation and intein-based methods allow production of circular derivatives of larger proteins, resulting in improved stability and refolding properties. Here we show that circular proteins can be made reversibly with excellent efficiency by means of a sortasecatalyzed cyclization reaction, requiring only minimal modification of the protein to be circularized.Sortases are bacterial enzymes that predominantly catalyze the attachment of surface proteins to the bacterial cell wall (1, 2). Other sortases polymerize pilin subunits for the construction of the covalently stabilized and covalently anchored pilus of the Gram-positive bacterium (3-5). The reaction catalyzed by sortase involves the recognition of short 5-residue sequence motifs, which are cleaved by the enzyme with the concomitant formation of an acyl enzyme intermediate between the active site cysteine of sortase and the carboxylate at the newly generated C terminus of the substrate (1, 6 -8). In many bacteria, this covalent intermediate can be resolved by nucleophilic attack from the pentaglycine side chain in a peptidoglycan precursor, resulting in the formation of an amide bond between the pentaglycine side chain and the carboxylate at the cleavage site in the substrate (9, 10). In pilus construction, alternative nucleophiles such as lysine residues or diaminopimelic acid participate in the transpeptidation reaction (3, 4).When appended near the C terminus of proteins that are not natural sortase substrates, the recognition sequence of Staphylococcus aureus sortase A (LPXTG) can be used to effectuate a sortase-catalyzed transpeptidation reaction using a diverse array of artificial glycine-based nucleophiles (Fig. 1). The result is efficient installation of a diverse set of moieties, including lipids (11), carbohydrates (12), peptide nucleic acids (13), biotin (14), fluorophores (14, 15), polymers (16), solid supports (16 -18), or peptides (15,19) at the C terminus of the protein substrate. During the course of our studies to further expand sortase-based protein engineering, we were struck by the frequency and relative ease with which intramolecular transpeptidation reactions were occurring. Specifically, proteins equipped with not only the LPXTG motif but also N-terminal glycine residues yielded covalently closed circular polypeptides (Fig. 1). Similar reactivity using sortase has been described in two previous cases; however, rigorous characterization of the circular polypeptides was absent (16,20). The circular proteins in these reports were observed as minor components of more complex reaction mixtures, and the cyclization r...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.