A number of competing failure mechanisms are involved in bearing failure initiation. For well manufactured bearings operating under clean and well controlled running conditions, sub-surface initiated fatigue is the classical initiation form. Three mechanisms dominate the concept of sub-surface induced initiation and growth: (i) The well documented slow structural breakdown of the steel matrix due to accumulation of fatigue damage in a process superficially similar to tempering, (ii) stress induced generation of butterflies by a process enabling the growth of butterfly micro-cracks and accompanying wings at non-metallic inclusions, and (iii) surface induced hydrogen intrusion causing hydrogen-enhanced fatigue damage accumulation in the matrix. The development of butterflies as a function of contact stress, over-rolling, and non-metallic inclusion characteristics is presented, and the influence of metallurgical cleanliness and processing history on this progression is discussed. The results of laboratory conducted tests are compared to results from field applications where premature spallings have occurred. The progression from butterfly micro-cracks to extending cracks with non-etching borders has been studied. Special interest has been paid to the interaction between the non-metallic inclusion composition and morphology and their propensity to generate butterfly wing formations, as this may affect the way that inclusion harmfulness should be judged in rolling bearing steel quality assurance efforts. Complex oxy-sulfides are the main butterfly initiators in today’s bearing steels.
Stress-controlled, low-cycle, push-pull fatigue tests were performed on three variants of the bearing steel SAE 52100 with slightly different compositions and heat treatments. The experiments demonstrated differences in the cyclic plastic behaviour of differently hardened steels (bainitically-hardened and martensitically-hardened, respectively), whereas the two martensitic variants, which differ in composition, behaved very similarly. Bainitically-hardened SAE 52100 steel exhibited initial hardening followed by cyclic softening above a stress amplitude level of 1200 MPa. In contrast, the rnartensiticallyhardened variants showed a pronounced cyclic hardening. The deformation behaviour of the martensitically-hardened bearing steel in a monotonic tensile test and during the first cycles can be well understood on the basis of the transformation of retained austenite. This process leads to an onset of plastic deformation at lower stresses compared to the bainitically-hardened bearing steel. As a result of the subsequent cyclic hardening of the rnartensitic variants, the CSS curves are almost identical for the differently hardened conditions under investigation. Additional tests under pulsating compression documented that a high negative mean stress enhances the cyclic plasticity.
NOMENCLATUREE, = Young's modulus at zero stress N = number of cycles N, = number of cycles till failure R, = tensile strength R f 1 2 = 0.2% yield strength As,, = plastic strain range E, = total strain E,, = elastic strain sp, = plastic strain u = stress
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.