Ischemia is characterized by anoxia and a large decrease of tissue pH. After a critical period of ischemia, reperfusion precipitates irreversible injury. Previous work showed that reperfusion injury to cultured neonatal myocytes was precipitated by a rapid return to physiological pH, a "pH paradox" (Bond, J., B. Herman, and J. Lemasters. Biochem. Biophys. Res. Commun. 179: 798-803, 1991). The aim of this study was to measure intracellular pH (pHi) and cytosolic free Ca2+ during the pH paradox of reperfusion injury to cultured neonatal rat cardiac myocytes. pHi and free Ca2+ were measured by ratio imaging of 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein and fura 2 fluorescence. To simulate ATP depletion and acidosis of ischemia, myocytes were incubated with 20 mM 2-deoxyglucose plus 2.5 mM NaCN at pH 6.2. During simulated ischemia, pHi dropped to < 6.5 and subsequently remained constant. During this time, some blebbing but little hypercontraction occurred. After 3 or 4 h of simulated ischemia, inhibitors were removed and cells were incubated at pH 7.4 to simulate reperfusion. pHi began to increase, blebbing accelerated, and myocytes hypercontracted. As pHi increased, viability was lost. The same occurred if pH was increased but metabolic inhibitors were not removed. Monensin, a Na(+)-H+ ionophore, accelerated the increase of pH after reperfusion and hastened cell killing. Hypercontraction, blebbing, and loss of viability did not occur when inhibitors were removed at pH 6.2 or in the presence of dimethylamiloride, an inhibitor of Na(+)-H+ exchange. Protection was associated with maintenance of an acidotic pHi. Free Ca2+ progressively increased during simulated ischemia. After simulated reperfusion, free Ca2+ increased further.(ABSTRACT TRUNCATED AT 250 WORDS)
Rat neonatal myocytes exposed to 2.5 mM CaCN and 20 mM 2-deoxyglucose at pH 6.2 (chemical hypoxia) quickly lose viability when pH is increased to 7.4, with or without washout of inhibitors--a 'pH paradox'. In this study, we evaluated the effect of two Na+/H+ exchange inhibitors (dimethylamiloride and HOE694) and a Na+/Ca2+ exchange inhibitor (dichlorobenzamil) on pH-dependent reperfusion injury. Intracellular free Ca2+ and electrical potential were monitored by laser scanning confocal microscopy of rat neonatal cardiac myocytes grown on coverslips and co-loaded with Fluo-3 and tetramethylrhodamine methylester. After 30-60 min of chemical hypoxia at pH 6.2, mitochondria depolarized and Ca2+ began to increase uniformly throughout the cell. Free Ca2+ reached levels estimated to exceed 2 microM by 4 h. Washout of inhibitors at pH 7.4 (reperfusion), with or without dichlorobenzamil, killed most cells within 60 min, despite a marked reduction of Ca2+ in dichlorobenzamil-treated cells. Reperfusion at pH 7.4 in the presence of 75 microM dimethylamiloride or 20 microM HOE694, or at pH 6.2, prevented cell death. HOE694-treated cells placed into culture medium recovered mitochondrial membrane potential. In most cells, this occurred before normal Ca2+ was restored. Contracted myocytes re-extended over a 24-h-period. By 48 hours, most cells contracted spontaneously and showed normal Ca2+ transients. Our results indicate that Na+/H+ exchange inhibition protects against pH-dependent reperfusion injury and facilitates full recovery of cell function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.