The proper planning and choice of such facilities depends on a number of non-process factors--market/economic, geographical, climate, cultural, political, etc. These determine the optimum output of the facility. The input is determined by the characteristics of the reservoirs supplying raw material for conditioning and processing. These establish boundary conditions within which the process must conform. The engineering calculations therefore must find the optimum path between input and output … and are not independent of these considerations. This paper presents the state of the art of gas plant design and how this relates to the non-process factors. It is necessarily an overview but outlines a plan of attack that should provide maximum profitability.
The reactivity of electrochemically generated radical cations toward alcohol and p-toluene sulfonamide nucleophiles was directly investigated through competition experiments. Alcohol-trapping of the radical cation is the kinetically favored pathway and is reversible. Trapping with the sulfonamide leads to the thermodynamic product. Both reaction pathways were investigated computationally with density functional theory (UB3LYP/6-31G(d)) calculations.
This paper presents the results of the data obtained in the first stage of a long-range study at high pressures of the system, vapor-hydrate-water rich liquid-hydrocarbon rich liquid. The data presented are for the three-phase systems in which no hydrocarbon liquid exists. Tests were performed on 10 gases at pressures from 1,000 to 10,000 psia. One of these was substantially pure methane, and the remainder were binary mixtures of methane with ethane, propane, iso-butane and normal butane. Several conclusions may be drawn from the data.Contrary to previous extrapolations, the hydrocarbon mixtures tested form straight lines in the range of 6,000 to 10,000 psia which are parallel to the curves for pure methane, when the log of pressure is plotted vs hydrate formation temperature.The hydrate formation temperature may be predicted accurately at pressures from 6,000 to 10,000 psia by using a modified form of the Clapeyron equation. The total hydrate curve may be predicted by using the vapor-solid equilibrium constants of Carson and Katz to 4,000 psia and joining the two segments with a smooth continuous curve between 4,000 and 6,000 psia.The use of gas specific gravity as a parameter in hydrate correlations is unsatisfactory at elevated pressures.The hydrate crystal lattice is pressure sensitive at elevated pressures. Introduction Prior to 1950 many studies had been made of the hydrate forming conditions for typical natural gases to pressures of 4,000 psia. Most of these attempted to correlate the log of system pressure vs hydrate formation temperature, with gas specific gravity as a parameter. One of the more promising correlations was made by Katz, et al, which utilized vapor-solid equilibrium constants. The only published data above 4,000 psia are those of Kobayashi and Katz for pure methane to a pressure of 11,240 psia. In the intervening years, most published charts for the high-pressure range have represented nothing more than extrapolations of the low-pressure data, with the methane line serving as a general guide. The reliability of these charts has become increasingly doubtful (and critical) in our present technology as we handle more high-pressure systems.
Amidyl radicals have been generated from amides under mild conditions electro-oxidatively. Their reactivity toward electron-rich double bonds to form five- and six-membered rings has been demonstrated experimentally and explored with density functional theory (DFT) calculations (UB3LYP/6-31G(d,p)).
Let = ZG be the integer group ring of a group, G, of prime order. A main result of this note is that every -module with a free underlying abelian group decomposes into a direct sum of copies of the well-known indecomposable -lattices of finite rank. The first part of the proof reduces the problem to one about countably generated modules, and works in a wider context of suitably restricted modules over orders of finite lattice type of a quite general type. However, for countably generated modules, use is seemingly needed of the classical theory of -lattices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.