Interferon gamma, referred to here as IFN-γ, is a major component in immunological cell signaling and is a critical regulatory protein for overall immune system function. First discovered in 1965 (Wheelock Science 149: (3681)310-311, 1965), IFN-γ is the only Type II interferon identified. Its expression is both positively and negatively controlled by different factors. In this chapter, we will review the transcriptional and post-transcriptional control of IFN-γ expression. In the transcriptional control part, the regular activators and suppressors are summarized, we will also focus on the epigenetic control, such as chromosome access, DNA methylation, and histone acetylation. The more we learn about the control of this regulatory protein will allow us to apply this knowledge in the future to effectively manipulate IFN-γ expression for the treatment of infections, cancer, inflammation, and autoimmune diseases.
Our data implicate type I IFN signaling as a necessary component of the sex bias of this murine model of autoimmune cholangitis. Importantly these data suggest that drugs that target the type I IFN signaling pathway would have potential benefit in the earlier stages of PBC. (Hepatology 2018;67:1408-1419).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.