Factor Xa (fXa) plays a critical role in the coagulation cascade, serving as the point of convergence of the intrinsic and extrinsic pathways. Together with nonenzymatic cofactor Va and Ca2+ on the phospholipid surface of platelets or endothelial cells, factor Xa forms the prothrombinase complex, which is responsible for the proteolysis of prothrombin to catalytically active thrombin. Thrombin, in turn, catalyzes the cleavage of fibrinogen to fibrin, thus initiating a process that ultimately leads to clot formation. Recently, we reported on a series of isoxazoline and isoxazole monobasic noncovalent inhibitors of factor Xa which show good potency in animal models of thrombosis. In this paper, we wish to report on the optimization of the heterocyclic core, which ultimately led to the discovery of a novel pyrazole SN429 (2b; fXa K(i) = 13 pM). We also report on our efforts to improve the oral bioavailability and pharmacokinetic profile of this series while maintaining subnanomolar potency and in vitro selectivity. This was achieved by replacing the highly basic benzamidine P1 with a less basic benzylamine moiety. Further optimization of the pyrazole core substitution and the biphenyl P4 culminated in the discovery of DPC423 (17h), a highly potent, selective, and orally active factor Xa inhibitor which was chosen for clinical development.
As part of an ongoing effort to prepare orally active factor Xa inhibitors using structure-based drug design techniques and molecular recognition principles, a systematic study has been performed on the pharmacokinetic profile resulting from replacing the benzamidine in the P1 position with less basic benzamidine mimics or neutral residues. It is demonstrated that lowering the pK(a) of the P1 ligand resulted in compounds (3-benzylamine, 15a; 1-aminoisoquinoline, 24a; 3-aminobenzisoxazole, 23a; 3-phenylcarboxamide, 22b; and 4-methoxyphenyl, 22a) with improved pharmacokinetic features mainly as a result of decreased clearance, increased volume of distribution, and enhanced oral absorption. This work resulted in a series of potent and orally bioavailable factor Xa inhibitors that ultimately led to the discovery of SQ311, 24a. SQ311, which utilizes a 1-aminoisoquinoline as the P1 ligand, inhibits factor Xa with a K(i) of 0.33 nM and demonstrates both good in vivo antithrombotic efficacy and oral bioavailability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.