To evaluate the feasibility, safety, and immunological effects of intrathecal and intravenous administration of autologous mesenchymal stem cells (MSCs) (also called mesenchymal stromal cells) in patients with multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Design: A phase 1/2 open-safety clinical trial. Patients: Fifteen patients with MS (mean [SD] Expanded Disability Status Scale [EDSS] score, 6.7 [1.0]) and 19 with ALS (mean [SD] Amyotrophic Lateral Sclerosis Functional Rating Scale [ALSFRS] score, 20.8 [8.0]) were enrolled. Intervention: After culture, a mean (SD) of 63.2ϫ 10 6(2.5ϫ10 6 ) MSCs was injected intrathecally (n =34) and intravenously (n = 14). In 9 cases, MSCs were magnetically labeled with the superparamagnetic iron oxide ferumoxides (Feridex). Main Outcome Measures:The main outcome measure was the recording of side effects. Follow-up (Յ25 months) included adverse events evaluation, neurological disability assessment by means of the EDSS, magnetic resonance imaging to exclude unexpected pathologies and track the labeled stem cells, and immunological tests to assess the short-term immunomodulatory effects of MSC transplantation.Results: Twenty-one patients had injection-related adverse effects consisting of transient fever, and 15 reported headache. No major adverse effects were reported during follow-up. The mean ALSFRS score remained stable during the first 6 months of observation, whereas the mean (SD) EDSS score improved from 6.7 (1.0) to 5.9 (1.6). Magnetic resonance imaging visualized the MSCs in the occipital horns of the ventricles, indicating the possible migration of ferumoxides-labeled cells in the meninges, subarachnoid space, and spinal cord. Immunological analysis revealed an increase in the proportion of CD4 ϩ CD25 ϩ regulatory T cells, a decrease in the proliferative responses of lymphocytes, and the expression of CD40 ϩ , CD83 ϩ , CD86 ϩ , and HLA-DR on myeloid dendritic cells at 24 hours after MSC transplantation. Conclusion:Transplantation of MSCs in patients with MS and ALS is a clinically feasible and relatively safe procedure and induces immediate immunomodulatory effects.
We undertook a Phase I/II trial in patients with apparent recurrent glioblastoma multiforme (GBM) based on imaging studies to determine the safety and tumor response of repetitive intravenous administration of NDV-HUJ, the oncolytic HUJ strain of Newcastle disease virus. The first part of the study utilized an accelerated intrapatient dose-escalation protocol with one-cycle dosage steps of 0.1, 0.32, 0.93, 5.9, and 11 billion infectious units (BIU) of NDV-HUJ (1 BIU = 1 x 10(9) EID(50) 50% egg infectious dose) followed by three cycles of 55 BIU. Virus was administered by intravenous infusion over 15 min. In the second part, patients received three cycles of 11 BIU. All patients without progressive disease were maintained with two doses of 11 BIU iv weekly. Eleven of the 14 enrolled patients (11-58 years, Karnofsky performance scale 50-90%) received treatment. Toxicity was minimal with Grade I/II constitutional fever being seen in 5 patients. Maximum tolerated dose was not achieved. Anti-NDV hemagglutinin antibodies appeared within 5-29 days. NDV-HUJ was recovered from blood, saliva, and urine samples and one tumor biopsy. One patient achieved a complete response. Intravenous NDV-HUJ is well tolerated. The findings of good tolerability and encouraging responses warrant the continued evaluation of NDV-HUJ in GBM, as well as other cancers.
Homozygosity mapping was performed in a consanguineous Sephardic Jewish family with three patients who presented with severe infantile encephalopathy associated with pontocerebellar hypoplasia and multiple mitochondrial respiratory-chain defects. This resulted in the identification of an intronic mutation in RARS2, the gene encoding mitochondrial arginine-transfer RNA (tRNA) synthetase. The mutation was associated with the production of an abnormally short RARS2 transcript and a marked reduction of the mitochondrial tRNA(Arg) transcript in the patients' fibroblasts. We speculate that missplicing mutations in mitochondrial aminoacyl-tRNA synthethase genes preferentially affect the brain because of a tissue-specific vulnerability of the splicing machinery.
Smaller hippocampal volume is not a necessary risk factor for developing PTSD and does not occur within 6 months of expressing the disorder. This brain abnormality might occur in individuals with chronic or complicated PTSD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.