We review the characteristics of sea level variability at the coast focussing on how it differs from the variability in the nearby deep ocean. Sea level variability occurs on all timescales, with processes at higher frequencies tending to have a larger magnitude at the coast due to resonance and other dynamics. In the case of some processes, such as the tides, the presence of the coast and the shallow waters of the shelves results in the processes being considerably more complex than offshore. However, 'coastal variability' should not always be considered as 'short spatial scale variability' but can be the result of signals transmitted along the coast from 1000s km away. Fortunately, thanks to tide gauges being necessarily located at the coast, many aspects of coastal sea level variability can be claimed to be better understood than those in the deep ocean. Nevertheless, certain aspects of coastal variability remain under-researched, including how changes in some processes (e.g., wave setup, river runoff) may have contributed to the historical mean sea level records obtained from tide gauges which are now used routinely in large-scale climate research.
Typhoon Megi passed between two subsurface moorings in the northern South China Sea in October 2010 and the upper ocean thermal and dynamical response with strong internal tides present was examined in detail. The entire observed water column (60-360 m) was cooled due to strong Ekmanpumped upwelling (up to 50 m in the thermocline) by Megi, with maximum cooling of 4.2 C occurring in thermocline. A relatively weak (maximum amplitude of 0.4 m s 21 ) and quickly damped (e-folding time scale of 2 inertial periods) near-inertial oscillation (NIO) was observed in the mixed layer. Power spectrum and wavelet analyses both indicated an energy peak appearing at exactly the sum frequency fD1 (with maximum amplitude up to 0.2 m s 21 ) of NIO (f) and diurnal tide (D1), indicating enhanced nonlinear wave-wave interaction between f and D1 during and after typhoon. Numerical experiments suggested that energy transfer from NIO to fD1 via nonlinear interaction between f and D1 may have limited the growth and accelerated the damping of mixed layer NIO generated by Megi. The occurrence of fD1 had a high correlation with NIO; the vertical nonlinear momentum term, associated with the vertical shear of NIO and vertical velocity of D1 or vertical shear of D1 and vertical velocity of NIO, was more than 10 times larger than the horizontal terms and was responsible for forcing fD1. After Megi, surface-layer diurnal energy was enhanced by up to 100%, attributed to the combined effect of the increased surface-layer stratification and additional Megi-forced diurnal current.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.