Compositional compiler verification is a difficult problem that focuses on separate compilation of program components with possibly different verified compilers. Logical relations are widely used in proving correctness of program transformations in higher-order languages; however, they do not scale to compositional verification of multi-pass compilers due to their lack of transitivity. The only known technique to apply to compositional verification of multi-pass compilers for higher-order languages is parametric inter-language simulations (PILS), which is however significantly more complicated than traditional proof techniques for compiler correctness. In this paper, we present a novel verification framework for lightweight compositional compiler correctness . We demonstrate that by imposing the additional restriction that program components are compiled by pipelines that go through the same sequence of intermediate representations , logical relation proofs can be transitively composed in order to derive an end-to-end compositional specification for multi-pass compiler pipelines. Unlike traditional logical-relation frameworks, our framework supports divergence preservation—even when transformations reduce the number of program steps. We achieve this by parameterizing our logical relations with a pair of relational invariants . We apply this technique to verify a multi-pass, optimizing middle-end pipeline for CertiCoq, a compiler from Gallina (Coq’s specification language) to C. The pipeline optimizes and closure-converts an untyped functional intermediate language (ANF or CPS) to a subset of that language without nested functions, which can be easily code-generated to low-level languages. Notably, our pipeline performs more complex closure-allocation optimizations than the state of the art in verified compilation. Using our novel verification framework, we prove an end-to-end theorem for our pipeline that covers both termination and divergence and applies to whole-program and separate compilation, even when different modules are compiled with different optimizations. Our results are mechanized in the Coq proof assistant.
An efficient optimizing compiler can perform many cascading rewrites in a single pass, using auxiliary data structures such as variable binding maps, delayed substitutions, and occurrence counts. Such optimizers often perform transformations according to relatively simple rewrite rules, but the subtle interactions between the data structures needed for efficiency make them tricky to write and trickier to prove correct. We present a system for semi-automatically deriving both an efficient program transformation and its correctness proof from a list of rewrite rules and specifications of the auxiliary data structures it requires. Dependent types ensure that the holes left behind by our system (for the user to fill in) are filled in correctly, allowing the user low-level control over the implementation without having to worry about getting it wrong. We implemented our system in Coq (though it could be implemented in other logics as well), and used it to write optimization passes that perform uncurrying, inlining, dead code elimination, and static evaluation of case expressions and record projections. The generated implementations are sometimes faster, and at most 40% slower, than hand-written counterparts on a small set of benchmarks; in some cases, they require significantly less code to write and prove correct.
Abstract. This paper describes a computer system to visualize the location and alignment of an arthroscope using augmented virtuality. A 3D computer model of the patient's joint (from CT) is shown, along with a model of the tracked arthroscopic probe and the projection of the camera image onto the virtual joint. A user study, using plastic bones instead of live patients, was made to determine the effectiveness of this navigated display; the study showed that the navigated display improves target localization in novice residents.
We present Lilac, a separation logic for reasoning about probabilistic programs where separating conjunction captures probabilistic independence. Inspired by an analogy with mutable state where sampling corresponds to dynamic allocation, we show how probability spaces over a fixed, ambient sample space appear to be the natural analogue of heap fragments, and present a new combining operation on them such that probability spaces behave like heaps and measurability of random variables behaves like ownership. This combining operation forms the basis for our model of separation, and produces a logic with many pleasant properties. In particular, Lilac has a frame rule identical to the ordinary one, and naturally accommodates advanced features like continuous random variables and reasoning about quantitative properties of programs. Then we propose a new modality based on disintegration theory for reasoning about conditional probability. We show how the resulting modal logic validates examples from prior work, and give a formal verification of an intricate weighted sampling algorithm whose correctness depends crucially on conditional independence structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.