April 2020 Nsp3 abcam ab181620 Nucleocapsid Sino Biological 40143-MM05 Validation Commercial antibodies validated as per manufacturers website: Beta actin Sigma A5441 Immunoblot on chicken fibroblast cell extracts Spike Abcam Ab252690 Validated by ELISA on free peptide from SARS-CoV-1 Nsp3 abcam ab181620 Validated by western blot on SARS-CoV-1 infected cells Nucleocapsid Sino Biological 40143-MM05 Validated by western blot with corresponding viruses Eukaryotic cell lines Policy information about cell lines Cell line source(s) VeroE6 cells were obtained from ATCC, Calu-3 cells were obtained from Manfred Frey, originally from ATCC. Authentication Cells were not further authenticated Mycoplasma contamination Cells have been tested and are free of mycoplasma.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virions are surrounded by a lipid bilayer from which spike (S) protein trimers protrude. Heavily glycosylated S trimers bind the ACE2 receptor and mediate entry of virions into target cells. S exhibits extensive conformational flexibility: it modulates the exposure of its receptor binding site and later undergoes complete structural rearrangement to drive fusion of viral and cellular membranes. The structures and conformations of soluble, overexpressed, purified S proteins have been studied in detail using cryo-electron microscopy. The structure and distribution of S on the virion surface, however, has not been characterised. Here we applied cryo-electron microscopy and tomography to image intact SARS-CoV-2 virions, determining the high-resolution structure, conformational flexibility and distributions of S trimers in situ on the virion surface. These results provide a basis for understanding the conformations of S present on the virion, and for studying their interactions with neutralizing antibodies.
The mature HIV-1 capsid protects the viral genome and interacts with host proteins to travel from the cell periphery into the nucleus. To achieve this, the capsid protein, CA, constructs conical capsids from a lattice of hexamers and pentamers, and engages in and then relinquishes multiple interactions with cellular proteins in an orchestrated fashion. Cellular host factors including Nup153, CPSF6 and Sec24C engage the same pocket within CA hexamers. How CA assembles pentamers and hexamers of different curvatures, how CA oligomerization states or curvature might modulate host-protein interactions, and how binding of multiple co-factors to a single site is coordinated, all remain to be elucidated. Here, we have resolved the structure of the mature HIV-1 CA pentamer and hexamer from conical CA-IP6 polyhedra to high resolution. We have determined structures of hexamers in the context of multiple lattice curvatures and number of pentamer contacts. Comparison of these structures, bound or not to host protein peptides, revealed two structural switches within HIV-1 CA that modulate peptide binding according to CA lattice curvature and whether CA is hexameric or pentameric. These observations suggest that the conical HIV-1 capsid has different host-protein binding properties at different positions on its surface, which may facilitate cell entry and represent an evolutionary advantage of conical morphology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.