The effective dose of a chest examination with this chest tomosynthesis system is about twice that of a two-view chest examination and less than 2% of the published average values for thoracic CT. It is shown that complete consideration of the tomosynthesis acquisition technique and geometry is required for accurate determination of the effective dose to the patient. Tomosynthesis provides three-dimensional imaging at a dose level comparable to a two-view chest x-ray examination and may provide a low dose alternative to thoracic CT for obtaining depth information in chest imaging.
Digital tomosynthesis is a novel technique that allows easy and swift volume data acquisition in selected regions of the body. However, many radiologists and technologists are unfamiliar with this technique and the potential artifacts related to data acquisition. Digital tomosynthesis requires a single linear sweep of the x-ray tube assembly with corresponding tomographic reconstruction of large-area flat-panel detector radiographic data. Standard acquisition parameters include sweep angle, sweep direction, patient barrier-object distance, number of projections, and total radiation dose. Potential acquisition-related artifacts include blurring-ripple, ghost artifact-distortion, poor spatial resolution, image noise, and metallic artifact. A comprehensive understanding of the relationships between acquisition parameters and potential associated artifacts is critical to optimizing acquisition technique and avoiding misinterpretation of artifacts. Sweep direction should be chosen on the basis of the anatomy of interest and the purpose of the examination so as to reduce the influence of blurring-ripple, ghost artifact-distortion, and metallic artifact. Adjusting the sweep angle, number of projections, and radiation dose will optimize depth resolution, avoid ripple in the sections of interest, and reduce unnecessary radiation exposure without compromising image quality. Thus, it is important that the radiologist and technologist establish appropriate protocols for different examination types to allow optimal utilization of this novel imaging technique.
The radiation dose involved in any medical imaging modality that uses ionizing radiation needs to be well understood by the medical physics and clinical community. This is especially true of screening modalities. Digital breast tomosynthesis (DBT) has recently been introduced into the clinic and is being used for screening for breast cancer in the general population. Therefore, it is important that the medical physics community have the required information to be able to understand, estimate, and communicate the radiation dose levels involved in breast tomosynthesis imaging. For this purpose, the American Association of Physicists in Medicine Task Group 223 on Dosimetry in Tomosynthesis Imaging has prepared this report that discusses dosimetry in breast imaging in general, and describes a methodology and provides the data necessary to estimate mean breast glandular dose from a tomosynthesis acquisition. In an effort to maximize familiarity with the procedures and data provided in this Report, the methodology to perform the dose estimation in DBT is based as much as possible on that used in mammography dose estimation.
Dual-energy subtraction imaging increases the sensitivity and specificity of pulmonary nodule detection in chest radiography by reducing the contrast of overlying bone structures. Recent development of a fast, high-efficiency detector enables dual-energy imaging to be integrated into the traditional workflow. We have modified a GE Revolution XQ/i chest imaging system to construct a dual-energy imaging prototype system. Here we describe the operating characteristics of this prototype and evaluate image quality.Empirical results show that the dual-energy CNR is maximized if the dose is approximately equal for both high and low energy exposures. Given the high detector DQE, and allocation of dose between the two views, we can acquire dualenergy PA and conventional lateral images with total dose equivalent to a conventional two-view film chest exam. Calculations have shown that the dual-exposure technique has superior CNR and tissue cancellation than single-exposure CR systems. Clinical images obtained on a prototype dual-energy imaging system show excellent tissue contrast cancellation, low noise, and modest motion artefacts.In summary, a prototype dual-energy system has been constructed which enables rapid, dual-exposure imaging of the chest using a commercially available high-efficiency, flat-panel x-ray detector. The quality of the clinical images generated with this prototype exceeds that of CR techniques and demonstrates the potential for improved detection and characterization of lung disease through dual-energy imaging.
Advances in digital x-ray detector systems have led to a renewed interest in the performance of x-ray phosphors and other detector materials. Indirect flat panel x-ray detector and charged coupled device (CCD) systems require a more technologically challenging geometry, whereby the x-ray beam is incident on the front side of the scintillator, and the light produced must diffuse to the back surface of the screen to reach the photoreceptor. Direct detector systems based on selenium have also enjoyed a growing interest, both commercially and academically. Monte Carlo simulation techniques were used to study the x-ray scattering (Rayleigh and Compton) and the more prevalent x-ray fluorescence properties of seven different x-ray detector materials, Gd2O2S, CsI, Se, BaFBr, YTaO4, CaWO4, and ThO2. The redistribution of x-ray energy, back towards the x-ray source, in a forward direction through the detector, and lateral reabsorption in the detector was computed under monoenergetic conditions (1 keV to 130 keV by 1 keV intervals) with five detector thicknesses, 30, 60, 90, 120, and 150 mg/cm2 (Se was studied from 30 to 1000 mg/cm2). The radial distribution (related to the point spread function) of reabsorbed x-ray energy was also determined. Representative results are as follows: At 55 keV, more (31.3%) of the incident x-ray energy escaped from a 90 mg/cm2Gd2O2S detector than was absorbed (27.9%). Approximately 1% of the total absorbed energy was reabsorbed greater than 0.5 mm from the primary interaction, for 90 mg/cm2 CsI exposed at 100 kVp. The ratio of reabsorbed secondary (fluorescence + scatter) radiation to the primary radiation absorbed in the detectors (90 mg/cm2) (S/P) was determined as 10%, 16%, 2%, 12%, 3%, 3%, and 0.3% for a 100 kVp tungsten anode x-ray spectrum, for the Gd2O2S, CsI, Se, BaFBr, YTaO4, CaWO4, and ThO2 detectors, respectively. The results indicate significant x-ray fluorescent escape and reabsorption in common x-ray detectors. These findings suggest that x-ray fluorescent radiation redistribution should be considered in the design of digital x-ray imaging systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.