SUMMARY1. The main purpose of this study was to quantify the adaptation of spinal motoneurons to sustained and intermittent activation, using an extracellular route of stimulating current application to single test cells, in contrast to an intracellular route, as has been used previously. In addition, associations were tested between firing rate properties of the tested cells and other type (size)-related properties of these cells and their motor units.2. Motoneurons supplying the medial gastrocnemius muscle of the deeply anaesthetized cat were stimulated for 240 s with microelectrodes which passed sustained extracellular current at 1-25 times the threshold for repetitive firing. Many cells were also tested following a rest period with intermittent 1 s current pulses (duration 600 ms) at the same relative stimulus strength. Cell discharge was assessed from the EMG of the motor unit innervated by the test neuron. The motoneurons and their motor units were assigned to four categories (i.e. types FF, FR, S and F; where F = FF + FR) based on conventional criteria. In all, twenty F (16 FF, 4 FR) and fourteen S cells were studied with sustained stimulation. Thirty of these cells (17 F, 13 S) 4. All cells exhibited a delay from the onset of current to the first spike, followed by a brief accelerating discharge that was followed by a slower drop in firing rate. Some cells (21 of 34 with sustained activation; 20 of 32 with intermittent) exhibited doublet discharges (interspike intervals < 10 ms) that were intermingled with the more predominant singlet discharges. Doublets were more common in the S cell type.5. With sustained activation, the mean delay from the onset of current to the first spike was 2-6 + 1 1 s for F cells, and 3-2 + 1-9 s for S cells. The time required to reach peak frequency of singlet discharge following repetitive firing onset was significantly shorter for F than S cells (7-0 + 5 0 vs. 14-3 + 13-6 s) and the peak singlet frequencies also differed significantly (F, 28-0 + 7-7 Hz vs. S, 15-6 + 2-5 Hz). Subsequently, the mean magnitude of firing rate reduction from the peak to 24 s later was significantly greater for F cells than that for S cells (16-2 + 6 Hz vs. 5X8 + 3 Hz). These gradual reductions in firing frequency for both F and S cells during the course of their sustained stimulation were qualitatively similar to the late adaptation observed in previous studies that had employed intracellular stimulation.6. The time course of firing frequency for each unit with sustained activation was fitted with a double-exponential equation: the first time constant (T1) for the initial increase in frequency was relatively short (F, 2X5 + 2-1 s vs. S, 3-7 + 4-1 s). The second time constant (r2) was significantly shorter for F than S cells (130-7 + 98-4 s vs. 750 0 + 402-4 s). It is argued that the r2 values provided a quantitative description of the type of adaptation termed 'late' in previous studies.7. The responses to intermittent stimulation were qualitatively similar to those seen with sustained activat...
1. Experiments were performed to determine the change in membrane properties of genioglossal (GG) motoneurons during development. Intracellular recordings were made in 127 GG motoneurons from rats postnatal ages 1-30 days. 2. The input resistance (R(in)) and the membrane time constant (t(aum)) decreased between 5-6 and 13-15 days from 84.8 +/- 25.4 (SD) to 47.0 +/- 18.9 M omega (P < 0.01) and from 10.0 +/- 4.2 to 7.3 +/- 3.3 ms (P < 0.05), respectively. During this period, the rheobase (Irh) increased (P < 0.01) from 0.13 +/- 0.07 to 0.27 +/- 0.14 nA, and the percentage of cells exhibiting inward rectification increased from 5 to 40%. Voltage threshold (Vthr) of the action potential remained unchanged postnatally. 3. There was also a postnatal change in the shape of the action potential. Specifically, between 1-2 and 5-6 days, there was a decrease (P < 0.05) in the spike half-width from 2.23 +/- 0.53 to 1.45 +/- 0.44 ms, resulting, in part, from a steepening (P < 0.05) of the slope of the falling phase of the action potential from 21.6 +/- 10.1 to 32.9 +/- 13.1 mV/ms. The slope of the rising phase also increased significantly (P < 0.01) between 1-2 and 13-15 days from 68.4 +/- 31.0 to 91.4 +/- 44.3 mV/ms. 4. The average duration of the medium afterhyperpolarization (mAHPdur) decreased (P < 0.05) between 1-2 (193 +/- 53 ms) and 5-6 days (159 +/- 43 ms). Whereas the mAHPdur was found to be independent of membrane potential, there was a linear relationship between the membrane potential and the amplitude of the medium AHP (mAHPamp). From this latter relationship, a reversal potential for the mAHPamp was extrapolated to be -87 mV. No evidence for the existence of a slow AHP was found in these developing motoneurons. 5. All cells analyzed (n = 74) displayed adaptation during the first three spikes. The subsequent firing pattern was classified into two groups, adapting and nonadapting. Cells at birth were all adapting, whereas all cells but two from animals 13 days and older were nonadapting. At the intermediate age (5-6 days), the minority (27%) was adapting and the majority (73%) was nonadapting. 6. The mean slope of primary range for the first interspike interval (1st ISI) was approximately 90 Hz/nA. This value was similar for both adapting and nonadapting cells and did not change postnatally.(ABSTRACT TRUNCATED AT 400 WORDS)
Our aim was to determine whether sympathetic withdrawal alone can account for the profound forearm vasodilation that occurs during syncope in humans. We also determined whether either vasodilating beta 2-adrenergic receptor or nitric oxide (NO) contributes to this dilation. Forearm blood flow was measured bilaterally in healthy volunteers (n = 10) by using plethysmography during two bouts of graded lower body negative pressure (LBNP) to syncope. In one forearm, drugs were infused via a brachial artery catheter while the other forearm served as a control. In the control arm, forearm vascular resistance (FVR) increased from 77 +/- 7 units at baseline to 191 +/- 36 units with -40 mmHg of LBNP (P< 0.05). Mean arterial pressure fell from 94 +/- 2 to 47 +/- 4 mmHg just before syncope, and all subjects demonstrated sudden bradycardia at the time of syncope. At the onset of syncope, there was sudden vasodilation and FVR fell to 26 +/- 6 units (P < 0.05 vs. baseline). When the experimental forearm was treated with bretylium, phentolamine, and propranolol, baseline FVR fell to 26 +/- 2 units, the vasoconstriction during LBNP was absent, and FVR fell further to 16 +/- 1 units at syncope (P < 0.05 vs. baseline). During the second trial of LBNP, mean arterial pressure again fell to 47 +/- 4 mmHg and bradycardia was again observed. Treatment of the experimental forearm with the NO synthase inhibitor NG-monomethyl-L-arginine in addition to bretylium, phentolamine, and propranolol significantly increased baseline FVR to 65 +/- 5 units but did not prevent the marked forearm vasodilation during syncope (FVR = 24 +/- 4 vs. 29 +/- 8 units in the control forearm). These data suggest that the profound vasodilation observed in the human forearm during syncope is not mediated solely by sympathetic withdrawal and also suggest that neither beta 2-adrenergic-receptor-mediated vasodilation nor NO is essential to observe this response.
To help reduce the gap between the cellular physiology of motoneurons (MNs) as studied "bottom-up" in animal preparations and the "top-down" study of the firing patterns of human motor units (MUs), this article addresses the question of whether motoneuron adaptation contributes to muscle fatigue. Findings are reviewed on the intracellularly recorded electrophysiology of spinal MNs as studied in vivo and in vitro using animal preparations, and the extracellularly recorded discharge of MUs as studied in conscious humans. The latter "top-down" approach, combined with kinetic measurements, has provided most of what is currently known about the neurobiology of muscle fatigue, including its task and context dependencies. It is argued that although the question addressed is still open, it should now be possible to design new "bottom-up" research paradigms using animal preparations that take advantage of what has been learned with the use of relatively noninvasive quantitative procedures in conscious humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.