Bisphenol A (BPA) was evaluated at concentrations of 0, 0.015, 0.3, 4.5, 75, 750, and 7500 ppm ( approximately 0.001, 0.02, 0.3, 5, 50, and 500 mg/kg/day of BPA) administered in the diet ad libitum to 30 CD((R)) Sprague-Dawley rats/sex/dose for 3 offspring generations, 1 litter/generation, through F3 adults. Adult systemic toxicity at 750 and 7500 ppm in all generations included: reduced body weights and body weight gains, reduced absolute and increased relative weanling and adult organ weights (liver, kidneys, adrenals, spleen, pituitary, and brain), and female slight/mild renal and hepatic pathology at 7500 ppm. Reproductive organ histopathology and function were unaffected. Ovarian weights as well as total pups and live pups/litter on postnatal day (PND) 0 were decreased at 7500 ppm, which exceeded the adult maximum tolerated dose (MTD). Mating, fertility, gestational indices; ovarian primordial follicle counts; estrous cyclicity; precoital interval; gestational length; offspring sex ratios; postnatal survival; nipple/areolae retention in preweanling males; epididymal sperm number, motility, morphology; daily sperm production (DSP), and efficiency of DSP were all unaffected. At 7500 ppm, vaginal patency (VP) and preputial separation (PPS) were delayed in F1, F2, and F3 offspring, associated with reduced body weights. Anogenital distance (AGD) on PND 0 was unaffected for F2 and F3 males and F3 females (F2 female AGD was increased at some doses, not at 7500 ppm, and was considered not biologically or toxicologically relevant). Adult systemic no observed adverse effect level (NOAEL) = 75 ppm (5 mg/kg/day); reproductive and postnatal NOAELs = 750 ppm (50 mg/kg/day). There were no treatment-related effects in the low-dose region (0.001-5 mg/kg/day) on any parameters and no evidence of nonmonotonic dose-response curves across generations for either sex. BPA should not be considered a selective reproductive toxicant, based on the results of this study.
Dietary bisphenol A (BPA) was evaluated in a mouse two-generation study at 0, 0.018, 0.18, 1.8, 30, 300, or 3500 ppm (0, 0.003, 0.03, 0.3, 5, 50, or 600 mg BPA/kg/day, 28 per sex per group). A concurrent positive control group of dietary 17beta-estradiol (0.5 ppm; 28 per sex) confirmed the sensitivity of CD-1 mice to an endogenous estrogen. There were no BPA-related effects on adult mating, fertility or gestational indices, ovarian primordial follicle counts, estrous cyclicity, precoital interval, offspring sex ratios or postnatal survival, sperm parameters or reproductive organ weights or histopathology (including the testes and prostate). Adult systemic effects: at 300 ppm, only centrilobular hepatocyte hypertrophy; at 3500 ppm, reduced body weight, increased kidney and liver weights, centrilobular hepatocyte hypertrophy, and renal nephropathy in males. At 3500 ppm, BPA also reduced F1/F2 weanling body weight, reduced weanling spleen and testes weights (with seminiferous tubule hypoplasia), slightly delayed preputial separation (PPS), and apparently increased the incidence of treatment-related, undescended testes only in weanlings, which did not result in adverse effects on adult reproductive structures or functions; this last finding is considered a developmental delay in the normal process of testes descent. It is likely that these transient effects were secondary to (and caused by) systemic toxicity. Gestational length was increased by 0.3 days in F1/F2 generations; the toxicological significance, if any, of this marginal difference is unknown. At lower doses (0.018-30 ppm), there were no treatment-related effects and no evidence of nonmonotonic dose-response curves for any parameter. The systemic no observable effect level (NOEL) was 30 ppm BPA (approximately 5 mg/kg/day); the reproductive/developmental NOEL was 300 ppm (approximately 50 mg/kg/day). Therefore, BPA is not considered a selective reproductive or developmental toxicant in mice.
Bisphenol A (BPA) is a weakly estrogenic monomer used in the production of polycarbonate plastic and epoxy resins, both of which are used in food contact and other applications. A physiologically based pharmacokinetic (PBPK) model of BPA pharmacokinetics in rats and humans was developed to provide a physiological context in which the processes controlling BPA pharmacokinetics (e.g., plasma protein binding, enterohepatic recirculation of the glucuronide [BPAG]) could be incorporated. A uterine tissue compartment was included to allow the correlation of simulated estrogen receptor (ER) binding of BPA with increases in uterine wet weight (UWW) in rats. Intravenous- and oral-route blood kinetics of BPA in rats and oral-route plasma and urinary elimination kinetics in humans were well described by the model. Simulations of rat oral-route BPAG pharmacokinetics were less exact, most likely the result of oversimplification of the GI tract compartment. Comparison of metabolic clearance rates derived from fitting rat i.v. and oral-route data implied that intestinal glucuronidation of BPA is significant. In rats, but not humans, terminal elimination rates were strongly influenced by enterohepatic recirculation. In the absence of BPA binding to plasma proteins, simulations showed high ER occupancy at doses without uterine effects. Restricting free BPA to the measured unbound amount demonstrated the importance of including plasma binding in BPA kinetic models: the modeled relationship between ER occupancy and UWW increases was consistent with expectations for a receptor-mediated response with low ER occupancy at doses with no response and increasing occupancy with larger increases in UWW.
The pharmacokinetics of bisphenol A (BPA), including the quantification of the major BPA metabolite BPA-monoglucuronide conjugate (BPA-glucuronide) was studied in Sprague-Dawley rats at different stages of gestation. 14C-BPA was administered orally at 10 mg BPA/kg body weight (0.2 mCi/rat) to nongravid rats and to other groups on gestation days (GD) 6, 14, and 17. GD 0 was when the vaginal smear was sperm positive or a copulatory plug was observed. Radioactivity derived from 14C-BPA was quantified in the maternal blood, selected tissues, and the embryo or fetus. BPA and BPA-glucuronide were quantified in maternal plasma and excreta. Additional rats were dosed orally at 10 mg 14C-BPA/kg (0.2 mCi/rat or 0.5 mCi/rat) on GD 11, 13, and 16 to further study the distribution of BPA and BPA-glucuronide to the embryo/fetal tissue. The tissue distribution, metabolism, or the rates or routes of excretion of BPA, or the plasma concentration-time profiles of BPA-glucuronide did not appear to be altered at any stage of gestation as compared to nonpregnant rats. In the GD 11 group, neither BPA nor BPA-glucuronide was detected in the yolk sacs or embryos, except for trace concentrations of BPA-glucuronide in the yolk sacs at 15 min postdosing. In the GD 13 group, both BPA and BPA-glucuronide were detected in the yolk sacs of the conceptus but not in the embryos/fetuses, except for BPA at 15 min. For the animals dosed with 0.2 mCi/rat on GD 16, both analytes were detected in the placentae at 15 min and 12 h, but not at 96 h. Traces of both analytes were detected in fetal tissue in two of five specimens at 15 min only. In rats dosed on GD 16 with 0.5 mCi/rat, the BPA-glucuronide and BPA concentrations in maternal plasma at 15 min were 1.7 and 0.06 mug equivalents (eq)/g plasma, respectively. At the same time postdosing in these animals, the placental BPA-glucuronide concentrations were lower (0.34 mug eq BPA [as glucuronide]/g), and the BPA concentrations were about equivalent (0.095 mug/g). Fetal BPA-glucuronide and BPA concentrations were markedly lower, 0.013 and 0.018 mug eq/g, respectively. Therefore, no selective affinity of either yolk sac/placenta or embryo/fetus for BPA or BPA metabolites relative to maternal plasma or tissues was observed in this study.
This study was conducted to determine the potential of bisphenol A (BPA) to induce functional and/or morphological effects to the nervous system of F1 offspring from dietary exposure during gestation and lactation according to the Organization for Economic Cooperation and Development and U.S. Environmental Protection Agency guidelines for the study of developmental neurotoxicity. BPA was offered to female Sprague-Dawley Crl:CD (SD) rats (24 per dose group) and their litters at dietary concentrations of 0 (control), 0.15, 1.5, 75, 750, and 2250 ppm daily from gestation day 0 through lactation day 21. F1 offspring were evaluated using the following tests: detailed clinical observations (postnatal days [PNDs] 4, 11, 21, 35, 45, and 60), auditory startle (PNDs 20 and 60), motor activity (PNDs 13, 17, 21, and 61), learning and memory using the Biel water maze (PNDs 22 and 62), and brain and nervous system neuropathology and brain morphometry (PNDs 21 and 72). For F1 offspring, there were no treatment-related neurobehavioral effects, nor was there evidence of neuropathology or effects on brain morphometry. Based on maternal and offspring body weight reductions, the no-observed-adverse-effect level (NOAEL) for systemic toxicity was 75 ppm (5.85 and 13.1 mg/kg/day during gestation and lactation, respectively), with no treatment-related effects at lower doses or nonmonotonic dose responses observed for any parameter. There was no evidence that BPA is a developmental neurotoxicant in rats, and the NOAEL for developmental neurotoxicity was 2250 ppm, the highest dose tested (164 and 410 mg/kg/day during gestation and lactation, respectively).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.