The 4th edition of the World Health Organization's Classification of Head and Neck Tumours was published in January of 2017. This article provides a summary of the changes to Chapter 4 Tumours of the oral cavity and mobile tongue and Chapter 8 Odontogenic and maxillofacial bone tumours. Odontogenic cysts which were eliminated from the 3rd 2005 edition were included in the 4th edition as well as other unique allied conditons of the jaws. Many new tumors published since 2005 have been included in the 2017 classification.
The 4 < sup > th < /sup > edition of the World Health Organization (WHO) Classification of Head and Neck Tumors was published in January 2017. The edition serves to provide an updated classification scheme, and extended genetic and molecular data that are useful as diagnostic tools for the lesions of the head and neck region. This review focuses on the most current update of odontogenic cysts and tumors based on the 2017 WHO edition. The updated classification has some important differences from the 3 < sup > rd < /sup > edition (2005), including a new classification of odontogenic cysts, 'reclassified' odontogenic tumors, and some new entities.
Circadian rhythms are fundamental properties of most eukaryotes, but evidence of biological clocks that drive these rhythms in prokaryotes has been restricted to Cyanobacteria. In vertebrates, the gastrointestinal system expresses circadian patterns of gene expression, motility and secretion in vivo and in vitro, and recent studies suggest that the enteric microbiome is regulated by the host’s circadian clock. However, it is not clear how the host’s clock regulates the microbiome. Here, we demonstrate at least one species of commensal bacterium from the human gastrointestinal system, Enterobacter aerogenes, is sensitive to the neurohormone melatonin, which is secreted into the gastrointestinal lumen, and expresses circadian patterns of swarming and motility. Melatonin specifically increases the magnitude of swarming in cultures of E. aerogenes, but not in Escherichia coli or Klebsiella pneumoniae. The swarming appears to occur daily, and transformation of E. aerogenes with a flagellar motor-protein driven lux plasmid confirms a temperature-compensated circadian rhythm of luciferase activity, which is synchronized in the presence of melatonin. Altogether, these data demonstrate a circadian clock in a non-cyanobacterial prokaryote and suggest the human circadian system may regulate its microbiome through the entrainment of bacterial clocks.
Using saliva for disease diagnostics and health surveillance is a promising approach as collecting saliva is relatively easy and non‐invasive. Over the past two decades, using salivary biomarkers specifically for early cancer detection has attracted much research interest, especially for cancers occurring in the oral cavity and oropharynx, for which the five‐year survival rate (62%) is still one of the lowest among all major human cancers. More than 90% of oral cancers are oral squamous cell carcinoma (OSCC) and the standard method for detection is through a comprehensive clinical examination by oral healthcare professionals. Despite the fact that the oral cavity is easily accessible, most OSCCs are not diagnosed until an advanced stage, which is believed to be the major reason for the low survival rate, and points to the urgent need for clinical diagnostic aids for early detection of OSCC. Thus, much research effort has been dedicated to investigating potential salivary biomarkers for OSCC, and more than 100 such biomarkers have been reported in the literature. However, some important issues and challenges have emerged that require solutions and further research in order to find reliable OSCC salivary biomarkers for clinical use. This review article provides an up‐to‐date list of potential OSCC salivary biomarkers reported as of the fall of 2013, and discusses those emerging issues. By raising the awareness of these issues on the part of both researchers and clinicians, it is hoped that reliable, specific and sensitive salivary biomarkers may be found soon—and not only biomarkers for early OSCC detection but also for detecting other types of cancers or even for monitoring non‐cancerous disease activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.