In recent times regulatory pressure to reduce CO 2 emissions has driven research towards looking at blending fossil fuels with alternatives such as crop-produced alcohols. The alcohol of interest in this paper is ethanol and it was studied in mixtures with gasoline and iso-octane in an optical sparkignition engine, running at 1500 RPM at low-load operation with 0.5 bar absolute intake plenum pressure. Specifically, tests involved fuels of 100% gasoline and 100% iso-octane, so that differences between multi and single-component fuels could be compared within this environment. A mixture of 25% ethanol with 75% iso-octane was also tested and compared. Finally, mixtures of highpercentage of ethanol (85% ethanol) in gasoline and in iso-octane were used in the study and compared. Tests were undertaken using a standard port injection system as well as a direct injection system so an appraisal of both mixture preparation methods could be made. Initially, a high-speed imaging study of the in-cylinder spray formation was undertaken with the direct injection system for different injection timings and engine-head temperatures under motoring engine conditions. The engine was also run with continuous firing using all fuels. In-cylinder pressure data were collected at 0.2° crank angle resolution for each cycle and synchronized with simultaneous high-speed flame imaging at 1° crank angle resolution for a series of 100 consecutive cycles for all test points. The flame images were processed to quantify the evolution of an equivalent flame radius.
In-cylinder air flow structures are known to play a major role in mixture preparation and engine operating limits for DISI engines. In this paper PIV was undertaken on in-cylinder flow fields for three different planes of measurement in the intake and compression strokes of a DISI engine for a lowload engine operating condition at 1500 RPM, 0.5 bar inlet plenum pressure (World Wide Mapping Point). One of these planes was vertical, cutting through the centrally located spark plug (tumble plane); the other two planes were horizontal, one close to TDC (10 mm below fire face) and the other one close to mid stroke (50 mm below fire face). Statistical analysis was undertaken on the numbers of cycles needed to determine ensemble average flow-field and turbulent kinetic energy maps with up to 1200 cycles considered. The effect of engine head temperature was also examined by obtaining flow fields using PIV with the engine head coolant held at 20 °C and 80 °C. LDV measurements were also performed and compared to the data obtained by PIV. Finally comparisons were made between the experimental data and results from CFD simulations using two different turbulence models on a grid of 1 million cells.
In-cylinder air flow structures are known to play a major role in mixture preparation and flame development in spark-ignition engines. In this paper both LDV and PIV measurements were undertaken in an optical spark-ignition at 1500 RPM, 0.5 bar inlet plenum pressure. One of the primary PIV planes was vertical, cutting through the centrally located spark plug (tumble plane) inside the pentroof at ignition timing. The other plane was horizontal inside the pentroof 1 mm below the spark plug. LDV was conducted 1 mm below the spark plug on a line from inlet to exhaust but also on a lower line 14 mm below the spark plug. In-cylinder PIV data at specific crank angles in the intake and compression strokes were also analysed on the central tumble plane and on a horizontal plane 14 mm below the spark plug. The combination of both techniques allowed high spatial and temporal resolution as the two data sets complemented each other to provide details of mean flow and turbulence characteristics on different levels, aiming ultimately for quantification of integral time scales and length scales. LDV cycle-resolved analysis distinguished between the classic approach of using the time integral of the autocorrelation function to obtain the integral time scale and a high-frequency cut-off analysis to obtain high-and low-frequency fluctuations about an in-cycle mean.3
The Engineering Meetings Board has approved this paper for publication. It has successfully completed SAE's peer review process under the supervision of the session organizer. This process requires a minimum of three (3) reviews by industry experts. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE. ISSN 0148-7191 Positions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE. The author is solely responsible for the content of the paper. SAE ABSTRACTThis experimental work was concerned with the combination of internal EGR with an early inlet valve closure strategy for improved part-load fuel economy. The experiments were performed in a new spark-ignited thermodynamic single cylinder research engine, equipped with a mechanical fully variable valvetrain on both the inlet and exhaust. During unthrottled operation at constant engine speed and load, increasing the mass of trapped residual allowed increased valve duration and lift to be used. In turn, this enabled further small improvements in gas exchange efficiency, thermal efficiency and hence indicated fuel consumption. Such effects were quantified under both port and homogeneous central direct fuel injection conditions. Shrouding of the inlet ports as a potential method to increase in-cylinder gas velocities has also been considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.