The two mammalian neuropeptides NPFF and NPAF have been shown to have important roles in nociception, anxiety, learning and memory, and cardiovascular reflex. Two receptors (FF1 and FF2) have been molecularly identified for NPFF and NPAF. We have now characterized a novel gene designated NPVF that encodes two neuropeptides highly similar to NPFF. NPVF mRNA was detected specifically in a region between the dorsomedial and ventromedial hypothalamic nuclei. NPVFderived peptides displayed higher affinity for FF1 than NPFF-derived peptides, but showed poor agonist activity for FF2. Following intracerebral ventricular administration, a NPVF-derived peptide blocked morphineinduced analgesia more potently than NPFF in both acute and inflammatory models of pain. In situ hybridization analysis revealed distinct expression patterns of FF1 and FF2 in the rat central nervous system. FF1 was broadly distributed, with the highest levels found in specific regions of the limbic system and the brainstem where NPVF-producing neurons were shown to project. FF2, in contrast, was mostly expressed in the spinal cord and some regions of the thalamus. These results indicate that the endogenous ligands for FF1 and FF2 are NPVFand NPFF-derived peptides, respectively, and suggest that the NPVF/FF1 system may be an important part of endogenous anti-opioid mechanism.
. This observation provided an opportunity to map the determinants of receptor affinity exhibited by BIBN4096BS and the truncated analogs, Compounds 1 and 2. All three compounds exhibited higher affinity for the human receptor, human CRLR/human RAMP1, than for the rat receptor, rat CRLR/rat RAMP1. We have now demonstrated that this species selectivity was directed exclusively by RAMP1. By generating recombinant human/rat CRLR/RAMP1 receptors, we demonstrated that co-expression of human CRLR with rat RAMP1 produced rat receptor pharmacology, and vice versa. Moreover, with rat/human RAMP1 chimeras and site-directed mutants, we have identified a single amino acid at position 74 of RAMP1 that modulates the affinity of small molecule antagonists for CRLR/RAMP1. Replacement of lysine 74 in rat RAMP1 with tryptophan (the homologous amino acid in the human receptor) resulted in a >100-fold increase in antagonist affinities, similar to the K i values for the human receptor. These observations suggest that important determinants of small molecule antagonist affinity for the CGRP receptor reside within the extracellular region of RAMP1 and provide evidence that this receptor accessory protein may participate in antagonist binding.CGRP is a 37-amino acid neuropeptide that is expressed in a variety of cell types in both the central and peripheral nervous systems (5). In many tissues, CGRP-containing fibers are closely associated with blood vessels (6). Among the various physiological functions reported for CGRP, the most pronounced is vasodilation. CGRP is the most powerful of the vasodilator transmitters (7), and its vasoactive effects have been demonstrated in a variety of blood vessels (8), including those in the cerebral, coronary, and mesenteric vasculature.Mounting evidence suggests that CGRP is involved in the pathophysiology of migraine headache (9). Migraine is thought to be associated with dilation of cerebral blood vessels and activation of the trigeminovascular system (10). During the headache phase of a migraine, CGRP levels are elevated in the cranial circulation (11, 12). Successful treatment of the headache with sumatriptan resulted in normalization of CGRP levels (12), thus implicating CGRP in the pathophysiology of this disorder. Moreover, intravenous administration of CGRP to migraineurs induced a delayed migrainous headache in some patients (13). These observations suggest that inhibition of CGRP-mediated vasodilation may have therapeutic utility in the treatment of migraine.Research in the area of CGRP has intensified in recent years due in large part to the identification of its receptor, CRLR 1 (14), and the cloning of the receptor activity-modifying proteins (RAMPs) (1) and receptor component protein (15). CGRP activity is mediated by the G s -coupled G-protein-coupled receptor (GPCR), CRLR, which shares 55% homology with the calcitonin receptor. In an elegant study, McLatchie et al. (1) demonstrated that functional CGRP and adrenomedullin receptors are both derived from CRLR and that the phenotype i...
Calcitonin gene-related peptide (CGRP), adrenomedullin (ADM), amylin and calcitonin (CT) are structurally and functionally related neuropeptides. It has recently been shown that the molecular pharmacology of CGRP and ADM is determined by coexpression of one of three receptor activity-modifying proteins (RAMPs) with calcitonin receptor-like receptor (CRLR). Furthermore, RAMP proteins have also been shown to govern the pharmacology of the calcitonin receptor, which in association with RAMP1 or RAMP3, binds amylin with high affinity. In this study, we have cloned the rat RAMP family and characterized the pharmacology of rat CGRP and ADM receptors. Rat RAMP1, RAMP2 and RAMP3 shared 72%, 69% and 85% homology with their respective human homologues. As expected CRLR-RAMP1 coexpression conferred sensitivity to CGRP, whilst association of RAMP2 or RAMP3 with CRLR conferred high affinity ADM binding. Using specific oligonucleotides we have determined the expression of RAMP1, RAMP2 and RAMP3 mRNAs in the rat central nervous system by in situ hybridization. The localization of RAMP mRNAs was heterogeneous. RAMP1 mRNA was predominantly expressed in cortex, caudate putamen and olfactory tubercles; RAMP2 mRNA was most abundant in hypothalamus; and RAMP3 was restrictively expressed in thalamic nuclei. Interestingly, in specific brain areas only a single RAMP mRNA was often detected, suggesting mutual exclusivity in expression. These data allow predictions to be made of where each RAMP protein may heterodimerize with its partner G-protein-coupled receptor(s) at the cellular level and consequently advance current understanding of cellular sites of action of CGRP, ADM, amylin and CT. Furthermore, these localization data suggest that the RAMP family may associate and modify the behaviour of other, as yet unidentified neurotransmitter receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.