One of the most classic size-effects in materials is the increase in the strength and hardness as the grain size decreases. However, a practical low size limit for this so-called grain boundary strengthening has been extensively reported for both metals and ceramics. Here, it is demonstrated that this limit is not observed in fully dense nanocrystalline magnesium aluminate, where hardness increases from 17.2 GPa to 28.4 GPa (surpassing sapphire hardness) when grain sizes are refined from 188 nm to 7.1 nm, respectively. The increasing trend is proportional to the square root of the grain size, following the Hall-Petch relationship, reassuring that common weakening mechanisms described in nanocrystalline metals might not be present in ceramics. To achieve such small grain sizes in fully dense ceramics, a new processing technique is introduced, Deformable Punch Spark Plasma Sintering, DP-SPS, in which nanoparticles are sheared under high pressures (~2 GPa) during densification at moderate temperatures (720-870°C). This inhibits grain growth due to the low processing temperatures and destabilizes/eliminate isolated residual pores, known to detrimentally affect mechanical behavior of ceramics. Noticeably, the sintered material showed high transparency in the visible spectrum, being reported as one of the hardest transparent oxide material to date.
Surface energy is a key parameter to understand and predict the stability of catalysts. In this work, the surface energy of MgAl 2 O 4 , an important base material for catalyst support, was reduced by using dopants prone to form surface excess (surface segregation): Y 3+ , Gd 3+ , and La 3+ . The energy reduction was predicted by atomistic simulations of spinel surfaces and experimentally demonstrated by using microcalorimetry. The surface energy of undoped MgAl 2 O 4 was directly measured as 1.65 ± 0.04 J/m 2 and was reduced by adding 2 mol % of the dopants to 1.55 ± 0.04 J/m 2 for Ydoping, 1.45 ± 0.05 J/m 2 for Gd-doping, and 1.26 ± 0.06 J/m 2 for La-doping. Atomistic simulations are qualitatively consistent with the experiments, reinforcing the link between the role of dopants in stabilizing the surface and the energy of segregation. Surface segregation was experimentally assessed using electron energy loss spectroscopy mapping in a scanning transmission electron microscopy image. The reduced energy resulted in coarsening inhibition for the doped samples and, hence, systematically smaller particle sizes (larger surface areas), meaning increased stability for catalytic applications. Moreover, both experiment and modeling reveal preferential dopant segregation to specific surfaces, which leads to the preponderance of {111} surface planes and suggests a strategy to enhance the area of desired surfaces in nanoparticles for better catalyst support activity.
The demand for increasingly higher performance semiconductor products has stimulated the semiconductor industry to respond by producing devices with increasingly complex circuitry, more transistors in less space, more layers of metal, dielectric and interconnects, more interfaces, and a manufacturing process with nearly 1,000 steps. As all device features are shrunk in the quest for higher performance, the role of Transmission Electron Microscopy as a characterization tool takes on a continually increasing importance over older, lower-resolution characterization tools, such as SEM. The Ångstrom scale imaging resolution and nanometer scale chemical analysis and diffraction resolution provided by modem TEM's are particularly well suited for solving materials problems encountered during research, development, production engineering, reliability testing, and failure analysis. A critical enabling technology for the application of TEM to semiconductor based products as the feature size shrinks below a quarter micron is advances in specimen preparation. The traditional 1,000Å thick specimen will be unsatisfactory in a growing number of applications. It can be shown using a simple geometrical model, that the thickness of TEM specimens must shrink as the square root of the feature size reduction. Moreover, the center-targeting of these specimens must improve so that the centertargeting error shrinks linearly with the feature size reduction. To meet these challenges, control of the specimen preparation process will require a new generation of polishing and ion milling tools that make use of high resolution imaging to control the ion milling process. In addition, as the TEM specimen thickness shrinks, the thickness of surface amorphization produced must also be reduced. Gallium focused ion beam systems can produce hundreds of Ångstroms of amorphised surface silicon, an amount which can consume an entire thin specimen. This limitation to FIB milling requires a method of removal of amorphised material that leaves no artifact in the remaining material.
The development of aberration-corrected electron microscopes (ACEMs) has made it possible to resolve individual atomic columns ('dumbbells') with correct interatomic spacings in elemental and compound semiconductors. Thus, the latest generations of ACEMs should become powerful instruments for determining detailed structural arrangements at defects and interfaces in these materials. This paper provides a short overview of off-line ('software') and on-line ('hardware') ACEM techniques, with particular reference to characterization of elemental and compound semiconductors. Exploratory probe-corrected studies of ZnTe/InP and ZnTe/GaAs epitaxial heterostructures and interfacial defects are also described. Finally, some of the associated problems and future prospects are briefly discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.