A recent method for estimating ligand binding affinities is extended. This method employs averages of interaction potential energy terms from molecular dynamics simulations or other thermal conformational sampling techniques. Incorporation of systematic deviations from electrostatic linear response, derived from free energy perturbation studies, into the absolute binding free energy expression significantly enhances the accuracy of the approach. This type of method may be useful for computational prediction of ligand binding strengths, e.g., in drug design applications.
An overview of the simplified linear interaction energy (LIE) method for calculation of ligand binding free energies is given. This method is based on force field estimations of the receptor-ligand interactions and thermal conformational sampling. A notable feature is that the binding energetics can be predicted by considering only the intermolecular interactions between the ligand and receptor. The approximations behind this approach are examined and different parametrizations of the model are discussed. In general, LIE type of methods appear particularly useful for computational drug lead optimization.
An extensive evaluation of the linear interaction energy (LIE) method for the prediction of binding affinity of docked compounds has been performed, with an emphasis on its applicability in lead optimization. An automated setup is presented, which allows for the use of the method in an industrial setting. Calculations are performed for four realistic examples, retinoic acid receptor gamma, matrix metalloprotease 3, estrogen receptor alpha, and dihydrofolate reductase, focusing on different aspects of the procedure. The obtained LIE models are evaluated in terms of the root-mean-square (RMS) errors from experimental binding free energies and the ability to rank compounds appropriately. The results are compared to the best empirical scoring function, selected from a set of 10 scoring functions. In all cases, good LIE models can be obtained in terms of free-energy RMS errors, although reasonable ranking of the ligands of dihydrofolate reductase proves difficult for both the LIE method and scoring functions. For the other proteins, the LIE model results in better predictions than the best performing scoring function. These results indicate that the LIE approach, as a tool to evaluate docking results, can be a valuable asset in computational lead optimization programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.