It has been known for some time that the AdS/CFT correspondence predicts a limit on the number of single particle states propagating on the compact spherical component of the AdS × S geometry. The limit is called the stringy exclusion principle. The physical origin of this effect has been obscure but it is usually thought of as a feature of very small distance physics. In this paper we will show that the stringy exclusion principle is due to a surprising large distance phenomenon. The massless single particle states become progressively less and less point-like as their angular momentum increases. In fact they blow up into spherical branes of increasing size. The exclusion principle is simply understood as the condition that the particle should not be bigger than the sphere that contains it.
Gravity solutions dual to d-dimensional field theories at finite charge density have a near-horizon region which is AdS2 × R d−1 . The scale invariance of the AdS2 region implies that at low energies the dual field theory exhibits emergent quantum critical behavior controlled by a (0+1)-dimensional CFT. This interpretation sheds light on recently-discovered holographic descriptions of Fermi surfaces, allowing an analytic understanding of their low-energy excitations. For example, the scaling behavior near the Fermi surfaces is determined by conformal dimensions in the emergent IR CFT. In particular, when the operator is marginal in the IR CFT, the corresponding spectral function is precisely of the "Marginal Fermi Liquid" form, postulated to describe the optimally doped cuprates.
We attempt to generalize the anti -de Sitter/conformal field theory correspondence to nonrelativistic conformal field theories which are invariant under Galilean transformations. Such systems govern ultracold atoms at unitarity, nucleon scattering in some channels, and, more generally, a family of universality classes of quantum critical behavior. We construct a family of metrics which realize these symmetries as isometries. They are solutions of gravity with a negative cosmological constant coupled to pressureless dust. We discuss realizations of the dust, which include a bulk superconductor. We develop the holographic dictionary and find two-point correlators of the correct form. A strange aspect of the correspondence is that the bulk geometry has two extra noncompact dimensions.
We report on a potentially new class of non-Fermi liquids in (2+1)-dimensions. They are identified via the response functions of composite fermionic operators in a class of strongly interacting quantum field theories at finite density, computed using the AdS/CFT correspondence. We find strong evidence of Fermi surfaces: gapless fermionic excitations at discrete shells in momentum space. The spectral weight exhibits novel phenomena, including particle-hole asymmetry, discrete scale invariance, and scaling behavior consistent with that of a critical Fermi surface postulated by Senthil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.