Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the STrengthening the Reporting of OBservational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy–Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed, but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct or analysis.
Julian Little and colleagues present the STREGA recommendations, which are aimed at improving the reporting of genetic association studies.
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not JPH -Year 7, Volume 6, Number 3, 2009 F R E E P A P E R S 2 3 9 prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis. I T A L I A N J O U R N A L O F P U B L I C H E A L T H
Background Vast sample sizes are often essential in the quest to disentangle the complex interplay of the genetic, lifestyle, environmental and social factors that determine the aetiology and progression of chronic diseases. The pooling of information between studies is therefore of central importance to contemporary bioscience. However, there are many technical, ethico-legal and scientific challenges to be overcome if an effective, valid, pooled analysis is to be achieved. Perhaps most critically, any data that are to be analysed in this way must be adequately ‘harmonized’. This implies that the collection and recording of information and data must be done in a manner that is sufficiently similar in the different studies to allow valid synthesis to take place.Methods This conceptual article describes the origins, purpose and scientific foundations of the DataSHaPER (DataSchema and Harmonization Platform for Epidemiological Research; http://www.datashaper.org), which has been created by a multidisciplinary consortium of experts that was pulled together and coordinated by three international organizations: P3G (Public Population Project in Genomics), PHOEBE (Promoting Harmonization of Epidemiological Biobanks in Europe) and CPT (Canadian Partnership for Tomorrow Project).Results The DataSHaPER provides a flexible, structured approach to the harmonization and pooling of information between studies. Its two primary components, the ‘DataSchema’ and ‘Harmonization Platforms’, together support the preparation of effective data-collection protocols and provide a central reference to facilitate harmonization. The DataSHaPER supports both ‘prospective’ and ‘retrospective’ harmonization.Conclusion It is hoped that this article will encourage readers to investigate the project further: the more the research groups and studies are actively involved, the more effective the DataSHaPER programme will ultimately be.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.