Steroid sex hormones induce dramatic seasonal changes in reproductive related behaviors and their underlying neural substrates in seasonally breeding vertebrates. For example, in adult white-crowned sparrows, increased Spring photoperiod raises circulating testosterone, causing morphological and electrophysiological changes in song-control nuclei, which modify song behavior for the breeding season. We investigated how photoperiod and steroid hormones induce these changes in morphology, electrophysiology, and behavior. Neurons in a song premotor nucleus, the robust nucleus of the arcopallium (RA), show increased intrinsic spontaneous firing rate and soma size when birds are in breeding condition. Using combinations of systemic and unilateral local intracerebral hormonal manipulations, we show that long-day photoperiod accelerates the effects of systemic testosterone on RA neurons via the estradiol-synthesizing enzyme aromatase (CYP19A1); these changes require inputs from the afferent song control nucleus HVC (used as a proper name) and steroid receptor activation within HVC; local coactivation of androgen and estrogen receptors (ARs and ERs, respectively) within HVC, but not RA, is sufficient to cause neuronal changes in RA; activation of ARs in RA is also permissive. Using bilateral local intracerebral hormone-receptor blockade, we found that ARs and ERs in the song-control nucleus HVC mediate systemic testosterone-induced changes in song stereotypy but not rate. This novel transsynaptic effect of gonadal steroids on activity and morphology of RA neurons is part of a concerted change in key premotor nuclei, enabling stereotyped song.
Here we show that inhibition shapes diverse responses to species-specific calls in the inferior colliculus (IC) of Mexican free-tailed bats. We presented 10 calls to each neuron of which 8 were social communication and 2 were echolocation calls. We also measured excitatory response regions: the range of tone burst frequencies that evoked discharges at a fixed intensity. The calls evoked highly selective responses in that IC neurons responded to some calls but not others even though those calls swept through their excitatory response regions. By convolving activity in the response regions with the spectrogram of each call, we evaluated whether responses to tone bursts could predict discharge patterns evoked by species-specific calls. The convolutions often predicted responses to calls that evoked no responses and thus were inaccurate. Blocking inhibition at the IC reduced or eliminated selectivity and greatly improved the predictive accuracy of the convolutions. By comparing the responses evoked by two calls with similar spectra, we show that each call evoked a unique spatiotemporal pattern of activity distributed across and within isofrequency contours and that the disparity in the population response was greatly reduced by blocking inhibition. Thus the inhibition evoked by each call can shape a unique pattern of activity in the IC population and that pattern may be important for both the identification of a particular call and for discriminating it from other calls and other signals.
Estradiol and other steroid hormones modulate the nervous system and behavior on both acute and long-term time scales. Though estradiol was originally characterized as a regulator of gene expression through the action of nuclear estrogen receptors (ER) that directly bind DNA to regulate gene expression, research over the past thirty years has firmly established that estradiol can initiate signaling pathways via extra-nuclear ERs associated with the cellular membrane, producing changes in neurons through stimulation of various intracellular signaling pathways. Several studies have determined that the classical ERs, ERα and ERβ, mediate some of these fast-acting signaling pathways through activation of G proteins. Since ERα and ERβ are not G protein-coupled receptors, the mechanisms by which ERs can stimulate signal transduction pathways are a focus of recent research. Here we discuss recent studies illustrating one mechanism by which ERα and ERβ initiate these pathways: through direct association with metabotropic glutamate receptors (mGluRs). Estradiol binding to these membrane-localized estrogen receptors results in mGluR signaling independent of glutamate. ERs are organized with mGluRs into functional signaling microdomains via caveolin proteins. The pairing of ERs to specific mGluRs via caveolins is region specific, with ERs being linked to different mGluRs in hippocampal, striatal, and other neurons. It is becoming clear that ER signaling through mGluRs is one important mechanism by which estrogens can modulate neuron and glial physiology, ultimately impacting various aspects of nervous system function.
Naturally occurring hormone cycles in adult female humans and rodents create a dynamic neuroendocrine environment. These cycles include the menstrual cycle in humans and its counterpart in rodents, the estrous cycle. These hormone fluctuations induce sex differences in the phenotypes of many behaviors, including those related to motivation, and associated disorders such as depression and addiction. This suggests that the neural substrate instrumental for these behaviors, including the nucleus accumbens core (AcbC), likewise differs between estrous cycle phases. It is unknown whether the electrophysiological properties of AcbC output neurons, medium spiny neurons (MSNs), change between estrous cycle phases. This is a critical knowledge gap given that MSN electrophysiological properties are instrumental for determining AcbC output to efferent targets. Here we test whether the intrinsic electrophysiological properties of adult rat AcbC MSNs differ across female estrous cycle phases and from males. We recorded MSNs with whole cell patch-clamp technique in two experiments, the first using gonad-intact adult males and females in differing phases of the estrous cycle and the second using gonadectomized males and females in which the estrous cycle was eliminated. MSN intrinsic electrophysiological and excitatory synaptic input properties robustly changed between female estrous cycle phases and males. Sex differences in MSN electrophysiology disappeared when the estrous cycle was eliminated. These novel findings indicate that AcbC MSN electrophysiological properties change across the estrous cycle, providing a new framework for understanding how biological sex and hormone cyclicity regulate motivated behaviors and other AcbC functions and disorders. NEW & NOTEWORTHY This research is the first demonstration that medium spiny neuron electrophysiological properties change across adult female hormone cycle phases in any striatal region. This influence of estrous cycle engenders sex differences in electrophysiological properties that are eliminated by gonadectomy. Broadly, these findings indicate that adult female hormone cycles are an important factor for neurophysiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.