In human airways diseases, including cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD), host defense is compromised and airways inflammation and infection often result. Mucus clearance and trapping of inhaled pathogens constitute key elements of host defense. Clearance rates are governed by mucus viscous and elastic moduli at physiological driving frequencies, whereas transport of trapped pathogens in mucus layers is governed by diffusivity. There is a clear need for simple and effective clinical biomarkers of airways disease that correlate with these properties. We tested the hypothesis that mucus solids concentration, indexed as weight percent solids (wt%), is such a biomarker. Passive microbead rheology was employed to determine both diffusive and viscoelastic properties of mucus harvested from human bronchial epithelial (HBE) cultures. Guided by sputum from healthy (1.5–2.5 wt%) and diseased (COPD, CF; 5 wt%) subjects, mucus samples were generated in vitro to mimic in vivo physiology, including intermediate range wt% to represent disease progression. Analyses of microbead datasets showed mucus diffusive properties and viscoelastic moduli scale robustly with wt%. Importantly, prominent changes in both biophysical properties arose at ∼4 wt%, consistent with a gel transition (from a more viscous-dominated solution to a more elastic-dominated gel). These findings have significant implications for: (1) penetration of cilia into the mucus layer and effectiveness of mucus transport; and (2) diffusion vs. immobilization of micro-scale particles relevant to mucus barrier properties. These data provide compelling evidence for mucus solids concentration as a baseline clinical biomarker of mucus barrier and clearance functions.
State-of-the-art techniques in passive particle-tracking microscopy provide high-resolution path trajectories of diverse foreign particles in biological fluids. For particles on the order of 1 µm diameter, these paths are generally inconsistent with simple Brownian motion.Yet, despite an abundance of data confirming these findings and their wide-ranging scientific implications, stochastic modeling of the complex particle motion has received comparatively little attention. Even among posited models, there is virtually no literature on likelihood-based inference, model comparisons, and other quantitative assessments. In this article, we develop a rigorous and computationally efficient Bayesian methodology to address this gap. We analyze two of the most prevalent candidate models for 30 second paths of 1 µm diameter tracer particles in human lung mucus: fractional Brownian motion (fBM) and a Generalized Langevin Equation (GLE) consistent with viscoelastic theory.Our model comparisons distinctly favor GLE over fBM, with the former describing the data remarkably well up to the timescales for which we have reliable information.
SynopsisVolume limitations and low yield thresholds of biological fluids have led to widespread use of passive microparticle rheology. The mean-squared-displacement (MSD) statistics of bead position time series (bead paths) are either applied directly to determine the creep compliance [1] or transformed to determine dynamic storage and loss moduli [2]. A prevalent hurdle arises when there is a non-diffusive experimental drift in the data. Commensurate with the magnitude of drift relative to diffusive mobility, quantified by a Péclet number, the MSD statistics are distorted, and thus the path data must be "corrected" for drift. The standard approach is to estimate and subtract the drift from particle paths, and then calculate MSD statistics. We present an alternative, parametric approach using maximum likelihood estimation that simultaneously fits drift and diffusive model parameters from the path data; the MSD statistics (and consequently the compliance and dynamic moduli) then follow directly from the best-fit model. We illustrate and compare both methods on simulated path data over a range of Péclet numbers, where exact answers are known. We choose fractional Brownian motion as the numerical model because it affords tunable, sub-diffusive MSD statistics consistent with typical 30 second long, experimental observations of microbeads in several biological fluids. Finally, we apply and compare both methods on data from human bronchial epithelial cell culture mucus.
Passive particle tracking of diffusive paths in soft matter, coupled with analysis of the path data, is firmly established as a fundamental methodology for characterization of both diffusive transport properties (the focus here) and linear viscoelasticity. For either focus, particle time series are typically analyzed by ensemble averaging over paths, a perfectly natural protocol for homogeneous materials or for applications where mean properties are sufficient. Many biological materials, however, are heterogeneous over length scales above the probe diameter, and the implications of heterogeneity for biologically relevant transport properties (e.g. diffusive passage times through a complex fluid layer) motivate this paper. Our goals are three-fold: first, to detect heterogeneity as reflected by the ensemble path data; second, to further decompose the ensemble of particle paths into statistically distinct clusters; and third, to fit the path data in each cluster to a model for the underlying stochastic process. After reviewing current best practices for detection and assessment of heterogeneity in diffusive processes, we introduce our strategy toward the first two goals with methods from the statistics and machine learning literature that have not found application thus far to passive particle tracking data. We apply an analysis based solely on the path data that detects heterogeneity and yields a decomposition of particle paths into statistically distinct clusters. After these two goals are achieved, one can then pursue model-fitting. We illustrate these heterogeneity metrics on diverse datasets: for numerically generated and experimental particle paths, with tunable and unknown heterogeneity, on numerical models for simple diffusion and anomalous sub-diffusion, and experimentally on sucrose, hyaluronic acid, agarose, and human lung culture mucus solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.