Even along the generally uplifting coast of the Pacific US, local geologic structures can cause subsidence.In this study we quantify Holocene-averaged subsidence rates in four estuaries (Carpinteria Slough, Goleta Slough, Campus Lagoon, and Morro Bay) along the southern and central California coast by comparing radiocarbon-dated estuarine material to a regional sea-level curve. Holocene-averaged rates of vertical motion range from subsidence of 1.4+/-2.4 mm/yr, 1.2+/-0.4 mm/yr, and 0.4+/-0.3 mm/yr in Morro Bay, Carpinteria Slough, and Goleta Slough, respectively, to possible uplift in Campus Lagoon (-0.1+/-0.9 mm/yr). The calculated rates of subsidence are of the same magnitude as rates of relative sea-level rise experienced over the late Holocene and effectively double the ongoing rates of relative sea-level rise experienced over the last five decades on other parts of the coast. The difference in rates of vertical motion among these four estuaries is attributed to their geological settings. Estuaries developed in subsiding geological structures such as synclines and fault-bounded basins are subsiding at much higher rates than those developed within flooded river valleys incised into marine terraces. Restoration projects accounting for future sea-level rise must consider the geologic setting of the estuaries and, if applicable, include subsidence in future sea-level rise scenarios, even along the tectonically uplifting US Pacific Coast.
We report on the distribution of contemporary foraminifera in salt marshes in Mission Bay and Carpinteria Slough, Southern California. Combining these data with existing datasets from Seal Beach and Tijuana, we explore the potential for a regional training set to underpin quantitative reconstructions of paleoenvironmental change from foraminifera preserved in salt-marsh sediments. We demonstrate that species’ distributions are highly dependent on elevation, suggesting fossil foraminiferal assemblages here, as in many other regions, are useful depositional elevation indicators. Transfer functions provide predictions from Mission Bay cores with decimeter-scale uncertainties. Nevertheless, interpretation of marsh-surface elevation change is complicated by a complex geomorphic setting and anthropogenic impacts. An abrupt change in elevation in the mid-1700s may be related to lateral spreading of water-saturated sediments during an earthquake on the Rose Canyon fault, suggesting the potential for foraminifera to support new palaeoseismic and sea-level records for the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.