We propose a network architecture which uses a single internal layer of locally-tuned processing units to learn both classification tasks and real-valued function approximations (Moody and Darken 1988). We consider training such networks in a completely supervised manner, but abandon this approach in favor of a more computationally efficient hybrid learning method which combines self-organized and supervised learning. Our networks learn faster than backpropagation for two reasons: the local representations ensure that only a few units respond to any given input, thus reducing computational overhead, and the hybrid learning rules are linear rather than nonlinear, thus leading to faster convergence. Unlike many existing methods for data analysis, our network architecture and learning rules are truly adaptive and are thus appropriate for real-time use.
We present methods for optimizing portfolios, asset allocations, and trading systems based on direct reinforcement (DR). In this approach, investment decision-making is viewed as a stochastic control problem, and strategies are discovered directly. We present an adaptive algorithm called recurrent reinforcement learning (RRL) for discovering investment policies. The need to build forecasting models is eliminated, and better trading performance is obtained. The direct reinforcement approach differs from dynamic programming and reinforcement algorithms such as TD-learning and Q-learning, which attempt to estimate a value function for the control problem. We find that the RRL direct reinforcement framework enables a simpler problem representation, avoids Bellman's curse of dimensionality and offers compelling advantages in efficiency. We demonstrate how direct reinforcement can be used to optimize risk-adjusted investment returns (including the differential Sharpe ratio), while accounting for the effects of transaction costs. In extensive simulation work using real financial data, we find that our approach based on RRL produces better trading strategies than systems utilizing Q-learning (a value function method). Real-world applications include an intra-daily currency trader and a monthly asset allocation system for the S&P 500 Stock Index and T-Bills.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.