Opacity is a general language-theoretic framework in which several security properties of a system can be expressed. Its parameters are a predicate, given as a subset of runs of the system, and an observation function, from the set of runs into a set of observables. The predicate describes secret information in the system and, in the possibilistic setting, it is opaque if its membership cannot be inferred from observation. In this paper, we propose several notions of quantitative opacity for probabilistic systems, where the predicate and the observation function are seen as random variables. Our aim is to measure (i) the probability of opacity leakage relative to these random variables and (ii) the level of uncertainty about membership of the predicate inferred from observation. We show how these measures extend possibilistic opacity, we give algorithms to compute them for regular secrets and observations, and we apply these computations on several classical examples. We finally partially investigate the non-deterministic setting. † Part of this work has been published in the proceedings of Qest'10 (Bérard et al. 2010).
Abstract-We propose an algorithmic approach to the problem of verification of the property of intransitive noninterference (INI), using tools and concepts of discrete event systems (DES). INI can be used to characterize and solve several important security problems in multilevel security systems. In a previous work, we have established the notion of -observability, which precisely captures the property of INI. We have also developed an algorithm for checking -observability by indirectly checking -observability for systems with at most three security levels. In this paper, we generalize the results for systems with any finite number of security levels by developing a direct method for checking -observability, based on an insightful observation that the function is a left congruence in terms of relations on formal languages. To demonstrate the applicability of our approach, we propose a formal method to detect denial of service vulnerabilities in security protocols based on INI. This method is illustrated using the TCP/IP protocol. The work extends the theory of supervisory control of DES to a new application domain.Index Terms-Denial of service, formal verification, information flow, interference, intransitive noninterference (INI), observability, purge, security policies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.