Computational periscopy with an ordinary digital camera This work was made openly accessible by BU Faculty. Please share how this access benefits you. Your story matters.Computing the proportions of light arriving from different directions allows a diffusely reflecting surface to play the role of a mirror in a periscope. Such computational periscopy has previously depended on light travel distances being proportional to times of flight and thus has mostly been achieved with expensive, specialized ultrafast optical systems 1-12 . We introduce a 2D computational periscopy technique that requires only a single photograph captured with an ordinary digital camera. Our technique recovers the position of an opaque object and the scene behind (but not completely obscured by) the object, where both the object and scene are outside the line of sight of the camera, without requiring controlled or time-varying illumination. Non-line-of-sight imaging with only inexpensive, ubiquitous equipment may have considerable value in monitoring of hazardous environments, navigation, and detecting hidden adversaries.
The measurement of the optical transmission matrix (TM) of an opaque material is an advanced form of space-variant aberration correction. Beyond imaging, TM-based methods are emerging in a range of fields, including optical communications, micro-manipulation, and computing. In many cases, the TM is very sensitive to perturbations in the configuration of the scattering medium it represents. Therefore, applications often require an up-to-the-minute characterisation of the fragile TM, typically entailing hundreds to thousands of probe measurements. Here, we explore how these measurement requirements can be relaxed using the framework of compressive sensing, in which the incorporation of prior information enables accurate estimation from fewer measurements than the dimensionality of the TM we aim to reconstruct. Examples of such priors include knowledge of a memory effect linking the input and output fields, an approximate model of the optical system, or a recent but degraded TM measurement. We demonstrate this concept by reconstructing the full-size TM of a multimode fibre supporting 754 modes at compression ratios down to ∼5% with good fidelity. We show that in this case, imaging is still possible using TMs reconstructed at compression ratios down to ∼1% (eight probe measurements). This compressive TM sampling strategy is quite general and may be applied to a variety of other scattering samples, including diffusers, thin layers of tissue, fibre optics of any refractive profile, and reflections from opaque walls. These approaches offer a route towards the measurement of high-dimensional TMs either quickly or with access to limited numbers of measurements.
We consider diffusion fields induced by a finite number of spatially localized sources and address the problem of estimating these sources using spatiotemporal samples of the field obtained with a sensor network. Within this framework, we consider two different time evolutions: the case where the sources are instantaneous, as well as, the case where the sources decay exponentially in time after activation. We first derive novel exact inversion formulas, for both source distributions, through the use of Green's second theorem and a family of sensing functions to compute generalized field samples. These generalized samples can then be inverted using variations of existing algebraic methods such as Prony's method. Next, we develop a novel and robust reconstruction method for diffusion fields by properly extending these formulas to operate on the spatiotemporal samples of the field. Finally, we present numerical results using both synthetic and real data to verify the algorithms proposed herein.Index Terms-Spatiotemporal sampling, diffusion fields, finite rate of innovation (FRI), Prony's method, sensor networks.
Non-line-of-sight (NLOS) imaging is a rapidly growing field seeking to form images of objects outside the field of view, with potential applications in autonomous navigation, reconnaissance, and even medical imaging. The critical challenge of NLOS imaging is that diffuse reflections scatter light in all directions, resulting in weak signals and a loss of directional information. To address this problem, we propose a method for seeing around corners that derives angular resolution from vertical edges and longitudinal resolution from the temporal response to a pulsed light source. We introduce an acquisition strategy, scene response model, and reconstruction algorithm that enable the formation of 2.5-dimensional representations—a plan view plus heights—and a 180∘ field of view for large-scale scenes. Our experiments demonstrate accurate reconstructions of hidden rooms up to 3 meters in each dimension despite a small scan aperture (1.5-centimeter radius) and only 45 measurement locations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.