Robotic swarms that take inspiration from nature are becoming a fascinating topic for multi-robot researchers. The aim is to control a large number of simple robots in order to solve common complex tasks. Due to the hardware complexities and cost of robot platforms, current research in swarm robotics is mostly performed by simulation software. The simulation of large numbers of these robots in robotic swarm applications is extremely complex and often inaccurate due to the poor modelling of external conditions. In this paper, we present the design of a low-cost, open-platform, autonomous micro-robot (Colias) for robotic swarm applications. Colias employs a circular platform with a diameter of 4 cm. It has a maximum speed of 35 cm/s which enables it to be used in swarm scenarios very quickly over large arenas. Long-range infrared modules with an adjustable output power allow the robot to communicate with its direct neighbours at a range of 0.5 cm to 2 m. Colias has been designed as a complete platform with supporting software development tools for robotics education and research. It has been tested in both individual and swarm scenarios, and the observed results demonstrate its feasibility for use as a micro-sized mobile robot and as a low-cost platform for robot swarm applications.
Agent-based crowd simulations are used for modelling building and space usage, allowing designers to explore hypothetical real-world scenarios, including extraordinary events such as evacuations. Existing work which engages virtual reality (VR) as a platform for crowd simulations has been primarily focussed on the validation of simulation models through observation; the use of interactions such as gaze to enhance a sense of immersion; or studies of proxemics. In this work, we extend previous studies of proxemics and examine the effects of varying crowd density on user experience and behaviour. We have created a simulation in which participants walk freely and perform a routine manual task, whilst interacting with agents controlled by a typical social force simulation model. We examine and report the effects of crowd density on both affective state and behaviour. Our results show a significant increase in negative affect with density, measured using a self-report scale. We further show significant differences in some aspects of user behaviours, using video analysis, and discuss how our results relate to VR simulation design for mixed human-agent scenarios.
A spatial and temporal climatology of convective storms over the Northeast United States during the warm season (April–September) is presented using composite National Operational Weather radar (NOWrad) data at 2-km grid spacing from 1996 to 2007 as well as cloud-to-ground lightning from the National Lightning Data Network (NLDN) on a 10-km grid from 2001 to 2007. There are preferred regions for convective storms within New York’s Hudson River Valley, western and southeastern Pennsylvania, central New Jersey, and across the Delmarva Peninsula. A favored initiation area during the early afternoon is the immediate lee of the Appalachians, with a tendency for these convective systems to move eastward to the coast by late evening. There is a sharp gradient in convective frequency within 20 km of the coast on average as a result of the relatively stable marine boundary layer, but as the sea surface warms by midsummer this convective activity increases near the coast, with a nocturnal (0600–1200 UTC) convective maximum over the coastal waters. Convective frequency can vary by more than 40% interannually across subregions of the Northeast. There was 40%–50% more convection across southern New England and Long Island during 1998–2001 than in 2002–05, which was partially the result of more frequent and amplified trough activity in 1998–2001, which helped to trigger convective storms. Spatial composites using the North American Regional Reanalysis (NARR) highlight some of the synoptic flow patterns associated with the enhanced convective frequencies. Convective storms tend to weaken rapidly from west to east across southern New England when there is low-level southerly flow from the relatively cool ocean. Severe convection is favored over the populated New York City and Long Island coastal regions when there is warm, moist, and unstable air extending northward along the mid-Atlantic coastal plain, with west-southwesterly flow at low levels and an approaching shortwave trough at midlevels.
In recent years, robotic animals and humans have been used to answer a variety of questions related to behavior. In the case of animal behavior, these efforts have largely been in the field of behavioral ecology. They have proved to be a useful tool for this enterprise as they allow the presentation of naturalistic social stimuli whilst providing the experimenter with full control of the stimulus. In interactive experiments, the behavior of robots can be controlled in a manner that is impossible with real animals, making them ideal instruments for the study of social stimuli in animals. This paper provides an overview of the current state of the field and considers the impact that the use of robots could have on fundamental questions related to comparative psychology: namely, perception, spatial cognition, social cognition, and early cognitive development. We make the case that the use of robots to investigate these key areas could have an important impact on the field of animal cognition
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.