A substantial body of evidence has demonstrated that biodiversity stabilizes ecosystem functioning over time in grassland ecosystems. However, the relative importance of different facets of biodiversity underlying the diversity-stability relationship remains unclear. Here we use data from 39 grassland biodiversity experiments and structural equation modelling to investigate the roles of species richness, phylogenetic diversity and both the diversity and community-weighted mean of functional traits representing the 'fast-slow' leaf economics spectrum in driving the diversity-stability relationship. We found that high species richness and phylogenetic diversity stabilize biomass production via enhanced asynchrony in the performance of co-occurring species. Contrary to expectations, low phylogenetic diversity enhances ecosystem stability directly, albeit weakly. While the diversity of fast-slow functional traits has a weak effect on ecosystem stability, communities dominated by slow species enhance ecosystem stability by increasing mean biomass production relative to the standard deviation of biomass over time. Our in-depth, integrative assessment of factors influencing the diversity-stability relationship demonstrates a more multicausal relationship than has been previously acknowledged.
Despite the importance of coastal ecosystems for the global carbon budgets, knowledge of their carbon storage capacity and the factors driving variability in storage capacity is still limited. Here we provide an estimate on the magnitude and variability of carbon stocks within a widely distributed marine foundation species throughout its distribution area in temperate Northern Hemisphere. We sampled 54 eelgrass (Zostera marina) meadows, spread across eight ocean margins and 36° of latitude, to determine abiotic and biotic factors influencing organic carbon (Corg) stocks in Zostera marina sediments. The Corg stocks (integrated over 25‐cm depth) showed a large variability and ranged from 318 to 26,523 g C/m2 with an average of 2,721 g C/m2. The projected Corg stocks obtained by extrapolating over the top 1 m of sediment ranged between 23.1 and 351.7 Mg C/ha, which is in line with estimates for other seagrasses and other blue carbon ecosystems. Most of the variation in Corg stocks was explained by five environmental variables (sediment mud content, dry density and degree of sorting, and salinity and water depth), while plant attributes such as biomass and shoot density were less important to Corg stocks. Carbon isotopic signatures indicated that at most sites <50% of the sediment carbon is derived from seagrass, which is lower than reported previously for seagrass meadows. The high spatial carbon storage variability urges caution in extrapolating carbon storage capacity between geographical areas as well as within and between seagrass species.
Marine ecosystems are experiencing rapid and pervasive loss of species.Understanding the consequences of species loss is critical to effectively managing these systems. Over the last several years, numerous experimental manipulations of 25 species richness have been performed, yet existing quantitative syntheses have focused on a just a subset of processes measured in experiments and, as such, have not summarized the full data available from marine systems. Here, we present the results of a meta-analysis of 174 marine experiments from 42 studies that have manipulated the species richness of organisms across a range of taxa and trophic 30 levels and analysed the consequences for various ecosystem processes (categorised as production, consumption or biogeochemical fluxes).Our results show that, generally, mixtures of species tend to enhance levels of ecosystem function relative to the average component species in monoculture, but have no or negative effect on functioning relative to the 'highest-performing' species. 35These results are largely consistent with those from other syntheses, and extend conclusions to ecological functions that are most commonly measured in the marine realm (e.g. nutrient release from sediment bioturbation). For experiments that manipulated three or more levels of richness, we attempted to discern the functional form of the BEF relationship. We found that, for response variables categorised as 40 consumption, a power-function best described the relationship, which is also consistent with previous findings. However, we identified a linear relationship between richness and production. Combined, our results suggest that losses of species will, on average, tend to alter the functioning of marine ecosystems. We outline several research frontiers that will allow us to more fully understand how, why, and 45 when diversity may drive the functioning of marine ecosystems.
Plants have evolved costly flowering traits, including the provisioning of rich nectar, to attract and reward their pollinators. Beekeeping (apiculture) locally increases densities of honey bees, which might drive economization of pollinator‐attracting traits, but the potential evolutionary consequences of beekeeping on plant–pollinator interactions remain unknown. Here, we present evidence suggesting that intensive apiculture has driven the rapid evolution of plant traits in the alpine lotus (Saussurea nigrescens) on the Tibetan Plateau by allowing reduced nectar volume provisioning without compromising pollination success. This conclusion is supported by measurements of reproductive and vegetative traits, including nectar, at sites of varying distance from apiaries that have housed introduced honey bees (Apis mellifera) since the early 1980s. Nectar volume was more than 60% lower at sites close to apiaries than at more distant sites, while nectar concentration remained consistent. When seedlings from field sites were grown under common garden conditions, trends in nectar volume identical to those in the field were observed, indicating that recently evolved genetic differences likely underlie patterns observed in the field. The adaptive advantage of reduced nectar volume under high pollinator density was clear in both the field and in the common garden. Specifically, plants from sites close to apiaries were taller, had more aboveground biomass, and produced more flowers and seeds compared to those at distant sites, which is consistent with the tradeoffs between nectar volume per flower and flower number per inflorescence within sites. The evolution of reduced nectar volume suggested by our results shows that the widespread practice of beekeeping might be a strong selective agent acting on wild plant populations and illustrates that human activities may indirectly affect evolution by changing critical species interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.