t(8;21) and t(16;21) create two fusion proteins, AML-1-ETO and AML-1-MTG16, respectively, which fuse the AML-1 DNA binding domain to putative transcriptional corepressors, ETO and MTG16. Here, we show that distinct domains of ETO contact the mSin3A and N-CoR corepressors and define two binding sites within ETO for each of these corepressors. In addition, of eight histone deacetylases (HDACs) tested, only the class I HDACs HDAC-1, HDAC-2, and HDAC-3 bind ETO. However, these HDACs bind ETO through different domains. We also show that the murine homologue of MTG16, ETO-2, is also a transcriptional corepressor that works through a similar but distinct mechanism. Like ETO, ETO-2 interacts with N-CoR, but ETO-2 fails to bind mSin3A. Furthermore, ETO-2 binds HDAC-1, HDAC-2, and HDAC-3 but also interacts with HDAC-6 and HDAC-8. In addition, we show that expression of AML-1-ETO causes disruption of the cell cycle in the G 1 phase. Disruption of the cell cycle required the ability of AML-1-ETO to repress transcription because a mutant of AML-1-ETO, ⌬469, which removes the majority of the corepressor binding sites, had no phenotype. Moreover, treatment of AML-1-ETO-expressing cells with trichostatin A, an HDAC inhibitor, restored cell cycle control. Thus, AML-1-ETO makes distinct contacts with multiple HDACs and an HDAC inhibitor biologically inactivates this fusion protein.The acute myeloid leukemia 1 (AML-1) gene is one of the most frequently mutated genes in human leukemia and is disrupted by multiple chromosomal translocations in AML, including t(8;21) and t(16;21) (9, 35, 38). t(8;21) is the most frequent of these translocations, and it contains the AML-1 DNA binding domain fused to a transcriptional corepressor, ETO (also known as MTG8) (4, 5, 34). t(16;21), although rarer, fuses the AML-1 DNA binding domain to an ETOrelated protein, MTG16 (9). AML-1 is also indirectly affected by inv(16), which fuses CBF, an allosteric regulator of AML-1, to a smooth muscle myosin heavy chain (25).ETO is highly related to MTG16 and a third family member, MTGR1, in mammalian cells and Nervy in Drosophila (6). The mammalian family members are highly conserved throughout the proteins, with four domains conserved in Nervy. These regions are an N-terminal domain that is also homologous to the transcriptional coactivator TAF110 (17), a hydrophobic heptad repeat (HHR) that mediates dimerization (3, 21), a domain of unknown function termed the Nervy domain, and a domain containing two zinc finger motifs that are required for contacting the central domain of N-CoR (29). The murine homologue of MTG16 was identified by low-stringency screening of a cDNA library by using an ETO cDNA as a probe (3). It shares 77% overall identity with human ETO, but within three of four conserved domains, these proteins are 92 to 96% identical, implying that they function similarly. The Nervy domain is the least conserved domain among family members and is 86% identical between these two proteins.ETO is a component of a high-molecular-weight complex containing ...
The t(8;21) is one of the most frequent chromosomal translocations associated with acute leukemia. This translocation creates a fusion protein consisting of the acute myeloid leukemia-1 transcription factor and the eight-twenty-one corepressor (AML1 ETO), which represses transcription through AML1 (RUNX1) DNA binding sites and immortalizes hematopoietic progenitor cells. We have identified the p14(ARF) tumor suppressor, a mediator of the p53 oncogene checkpoint, as a direct transcriptional target of AML1 ETO. AML1 ETO repressed the p14(ARF) promoter and reduced endogenous levels of p14(ARF) expression in multiple cell types. In contrast, AML1 stimulated p14(ARF) expression and induced phenotypes consistent with cellular senescence. Chromatin immunoprecipitation assays demonstrated that AML1 ETO was specifically bound to the p14(ARF) promoter. In acute myeloid leukemia samples containing the t(8;21), levels of p14(ARF) mRNA were markedly lower when compared with other acute myeloid leukemias lacking this translocation. Repression of p14(ARF) may explain why p53 is not mutated in t(8;21)-containing leukemias and suggests that p14(ARF) is an important tumor suppressor in a large number of human leukemias.
TEL is a member of the ETS family of transcription factors that interacts with the mSin3 and SMRT corepressors to regulate transcription. TEL is biallelically disrupted in acute leukemia, and loss of heterozygosity at the TEL locus has been observed in various cancers. Here we show that expression of TEL in Ras-transformed NIH 3T3 cells inhibits cell growth in soft agar and in normal cultures. Unexpectedly, cells expressing both Ras and TEL grew as aggregates. To begin to explain the morphology of Ras-plus TELexpressing cells, we demonstrated that the endogenous matrix metalloproteinase stromelysin-1 was repressed by TEL. TEL bound sequences in the stromelysin-1 promoter and repressed the promoter in transient-expression assays, suggesting that it is a direct target for TEL-mediated regulation. Mutants of TEL that removed a binding site for the mSin3A corepressor but retained the ETS domain failed to repress stromelysin-1. When BB-94, a matrix metalloproteinase inhibitor, was added to the culture medium of Ras-expressing cells, it caused a cell aggregation phenotype similar to that caused by TEL expression. In addition, TEL inhibited the invasiveness of Ras-transformed cells in vitro and in vivo. Our results suggest that TEL acts as a tumor suppressor, in part, by transcriptional repression of stromelysin-1.The TEL (for "translocation-ETS-leukemia," also referred to as ETV6) transcription factor is a target for disruption by chromosomal translocations in several forms of acute leukemia (24-27, 38, 50, 51, 54, 57, 63). TEL was originally identified as the gene on chromosome 12 that is disrupted by t(5;12) in patients with chronic myelomonocytic leukemia (25). This translocation fuses the N-terminal homodimerization domain of TEL to the tyrosine kinase domain of the platelet-derived growth factor receptor . The N terminus of TEL is also fused to the majority of the AML-1B (Runx-1) transcription factor by t(12;21), which is the most frequent translocation in pediatric B-cell acute lymphoblastic leukemias (23,26,57,61).TEL is a member of the ETS family of transcription factors. ETS factors bind heterogenous sequences centered around a core GGA sequence and cooperate with other transcription factors to regulate the transcription of a diverse set of genes (28,52,74). Several ETS factors are downstream effectors of oncogenic Ras proteins and are phosphorylated by mitogenactivated protein kinases (73,80). Aberrant expression of these ETS factors induces cellular transformation (73, 74). By contrast, TEL acts as a transcriptional repressor. In t(12;21),
Human melanoma is a highly metastatic cancer and the regional lymph nodes are generally the first site of metastasis. Adhesion to cryostat sections of human Iymph nodes was therefore studied using two human melanoma models established from lymph node metastases, namely, MeWo cell lines of diverse metastatic potentials and a highly metastatic cell line of recent origin designated MIM/8. We found a good correlation between the metastatic potentials of the melanoma cells as measured in nude mice and their ability to adhere to cryostat sections of human lymph nodes. When adhesion to immobilized extracellular matrix proteins was measured, a significant increase in adhesion, which correlated with increased metastasis, was seen mainly on vitronectin and to a lesser extent on fibronectin. The adhesion to vitronectin and to the frozen sections were specifically blocked by an RGD-containing peptide, mAb 661 to vitronectin and mAb LM609 to integrin a,83. FACS® analysis revealed a significant and specific increase in cell surface expression of aff3 on the metastatic cells as compared to the parent line. Together these results suggest that the adhesion of melanoma cells to lymph node vitronectin via the a, 3 receptor plays a role in the process of lymphatic dissemination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.