Abstract:The first demonstration of a hollow core photonic bandgap fiber (HC-PBGF) suitable for high-rate data transmission in the 2 µm waveband is presented. The fiber has a record low loss for this wavelength region (4.5 dB/km at 1980 nm) and a >150 nm wide surface-mode-free transmission window at the center of the bandgap. Detailed analysis of the optical modes and their propagation along the fiber, carried out using a time-of-flight technique in conjunction with spatially and spectrally resolved (S 2 ) imaging, provides clear evidence that the HC-PBGF can be operated as quasi-single mode even though it supports up to four mode groups. Through the use of a custom built Thulium doped fiber amplifier with gain bandwidth closely matched to the fiber's low loss window, error-free 8 Gbit/s transmission in an optically amplified data channel at 2008 nm over 290 m of 19 cell HC-PBGF is reported.
Abstract:We show for the first time 100 Gbit/s total capacity at 2 µm waveband, using 4 × 9.3 Gbit/s 4-ASK Fast-OFDM direct modulation and 4 × 15.7 Gbit/s NRZ-OOK external modulation, spanning a 36.3 nm wide wavelength range. WDM transmission was successfully demonstrated over 1.15 km of low-loss hollow core photonic bandgap fiber (HC-PBGF) and over 1 km of solid core fiber (SCF). We conclude that the OSNR penalty associated with the SCF is minimal, while a ~1-2 dB penalty was observed after the HC-PBGF probably due to mode coupling to higher-order modes. 594-596 (2011).
Abstract-The 2-µm wave band is emerging as a potential new window for optical telecommunications with several distinct advantages over the traditional 1.55µm region. First of all, the Hollow-Core Photonic Band Gap Fiber (HC-PBGF) is an emerging transmission fiber candidate with ultra-low nonlinearity and lowest latency (0.3% slower than light propagating in vacuum) that has its minimum loss within the 2-µm wavelength band. Secondly, the Thulium-doped fiber amplifier that operates in this spectral region provides significantly more bandwidth than the Erbium-doped fiber amplifier. In this paper we demonstrate a single-channel 2-µm transmitter capable of delivering >52 Gbit/s data signals, which is twice the capacity previously-demonstrated. To achieve this we employ discrete multi-tone (DMT) modulation via direct current modulation of a Fabry-Perot semiconductor laser. The 4.4-GHz modulation bandwidth of the laser is enhanced by optical injection locking, providing up to 11 GHz modulation bandwidth. Transmission over 500-m and 3.8-km samples of HC-PBGF is demonstrated.
A wavelength tunable optical comb is generated based on the gain-switching of an externally seeded Fabry-Pérot laser diode. The comb consists of about eight clearly resolved 10 GHz coherent sidebands within 3 dB spectral envelope peak and is tunable over the entire C-band (1530 to 1570 nm). The optical linewidth of the individual comb tones is measured to be lower than 100 kHz, and the RIN of the individually filtered comb tones (<-120 dB/Hz) is shown to be comparable to the entire unfiltered comb (<-135 dB/Hz). Besides, expansion of the tunable gain switched comb is achieved with the aid of an optical phase modulator, resulting in near doubling of the number of comb tones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.