Additive manufacturing (AM) for mechanical devices and electronic components has been actively researched recently. While manufacturing of those mechanical and electronic devices has their own merits, combining them into a single form is expected to grow by creating new applications in the future. The so-called all-printed electromechanical devices have potential applications in mechanical, electrical, and biomedical engineering. In this paper, the recent advancement in all-printed electromechanical devices is reviewed. A brief introduction to various AM techniques is presented first. Then, various examples of sensors, electronics, and electromechanical devices created by AM are reviewed.
The last two decades have seen evolution of smart materials and structures technologies from theoretical concepts to physical realization in many engineering fields. These include smart sensors and actuators, active damping and vibration control, biomimetics, and structural health monitoring. Recently, additive manufacturing technologies such as 3D printing and printed electronics have received attention as methods to produce 3D objects or electronic components for prototyping or distributed manufacturing purposes. In this paper, the viability of manufacturing all-printed smart structures, with embedded sensors and actuators, will be investigated. To this end, the current 3D printing and printed electronics technologies will be reviewed first. Then, the plausibility of combining these two different additive manufacturing technologies to create all-printed smart structures will be discussed. Potential applications for this type of all-printed smart structures include most of the traditional smart structures where sensors and actuators are embedded or bonded to the structures to measure structural response and cause desired static and dynamic changes in the structure.
A method is described for determining both the rate of heat generation and the time-dependent thermal properties of concrete so that the temperature development in a concrete section can be modelled. The method uses measured temperature data from concrete prisms and involves fitting data from the sample prisms of concrete to a simple theoretical heat-flow model. It is intended to facilitate on-site tests of concrete mixes; the resulting data can be used in computer models to predict the stresses that can lead to early thermal cracking in large pours.The method is tested by using the thermal properties obtained from the model to predict the temperature versus time profile at a number of locations in a large rectangular block of concrete and comparing these predictions with measured temperatures from the block.3
This paper investigates the vibration of a coupled microcantilever beam structure, in which a rigid body at their free end connects the two beams. The coupled beams are under equal and out-of-phase forces applied by piezoelectric films, which result in overall torsional motion. The equations describing the motion of the structure as well as the boundary conditions are developed using the Hamilton principle under the assumption of the structure being an Euler-Bernoulli beam. Two equations for each beam are realized: bending and torsional equations, which are combined in one torsional equation. The equation is solved using Galerkin approximation. The effects of dimensional parameters and input parameters are investigated including height, width, thickness, beam arrangement, applied voltage, input frequency, and mass of the tip. Geometry and mass were found to have significant effects on the angle, while input voltage was found to have a small linear effect. The overall sweeping motion was found to have an angle well below one degree in general. This shows that while the piezoelectric actuators can generate torsional sweeping, the effect is at a small angle that depends more on design than actuation force.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.