Using an EEG-based biomarker high accuracy of predicting the likelihood of being CT+ was obtained, with high NPV and sensitivity to any traumatic bleeding and to hematomas. Specificity was significantly higher than standard CT decision rules. The short time to acquire results and the ease of use in the ED environment suggests that EEG-based classifier algorithms have potential to impact triage and clinical management of head-injured patients.
The novel coronavirus SARS-CoV2 emerged in December 2019 and is now pandemic. Initial analysis suggests that 5% of infected patients will require critical care, and that respiratory failure requiring intubation is associated with high mortality.Sick patients are geographically dispersed: most patients will remain in situ until they are in need of critical care. Additionally, there are likely to be patients who require retrieval for other reasons but who are co-incidentally infected with SARS-CoV-2 or shedding virus.The COVID-19 pandemic therefore poses a challenge to critical care retrieval systems, which often depend on small teams of specialists who live and work together closely. The infection or quarantining of a small absolute number of these staff could catastrophically compromise service delivery.Avoiding occupational exposure to COVID-19, and thereby ensuring service continuity, is the primary objective of aeromedical retrieval services during the pandemic. In this discussion paper we collaborated with helicopter emergency medical services(HEMS) worldwide to identify risks in retrieving COVID-19 patients, and develop strategies to mitigate these.Simulation involving the whole aeromedical retrieval team ensures that safety concerns can be addressed during the development of a standard operating procedure. Some services tested personal protective equipment and protocols in the aeromedical environment with simulation. We also incorporated experiences, standard operating procedures and approaches across several HEMS services internationally.As a result of this collaboration, we outline an approach to the safe aeromedical retrieval of a COVID-19 patient, and describe how this framework can be used to develop a local standard operating procedure.
The potential clinical utility of a novel quantitative electroencephalographic (EEG)-based Brain Function Index (BFI) as a measure of the presence and severity of functional brain injury was studied as part of an independent prospective validation trial. The BFI was derived using quantitative EEG (QEEG) features associated with functional brain impairment reflecting current consensus on the physiology of concussive injury. Seven hundred and twenty adult patients (18-85 years of age) evaluated within 72 h of sustaining a closed head injury were enrolled at 11 U.S. emergency departments (EDs). Glasgow Coma Scale (GCS) score was 15 in 97%. Standard clinical evaluations were conducted and 5 to 10 min of EEG acquired from frontal locations. Clinical utility of the BFI was assessed for raw scores and percentile values. A multinomial logistic regression analysis demonstrated that the odds ratios (computed against controls) of the mild and moderate functionally impaired groups were significantly different from the odds ratio of the computed tomography (CT) postive (CT+, structural injury visible on CT) group (p = 0.0009 and p = 0.0026, respectively). However, no significant differences were observed between the odds ratios of the mild and moderately functionally impaired groups. Analysis of variance (ANOVA) demonstrated significant differences in BFI among normal (16.8%), mild TBI (mTBI)/concussed with mild or moderate functional impairment, (61.3%), and CT+ (21.9%) patients (p < 0.0001). Regression slopes of the odds ratios for likelihood of group membership suggest a relationship between the BFI and severity of impairment. Findings support the BFI as a quantitative marker of brain function impairment, which scaled with severity of functional impairment in mTBI patients. When integrated into the clinical assessment, the BFI has the potential to aid in early diagnosis and thereby potential to impact the sequelae of TBI by providing an objective marker that is available at the point of care, hand-held, non-invasive, and rapid to obtain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.