Background-Vitamin D is crucial for maintaining musculoskeletal health. Recently, vitamin D insufficiency has been linked to a number of extraskeletal disorders, including diabetes, cancer, and cardiovascular disease. Determinants of circulating 25-hydroxyvitamin D (25-OH D) include sun exposure and dietary intake, but its high heritability suggests that genetic determinants may also play a role.
Ruth Loos and colleagues report findings from a meta-analysis of multiple studies examining the extent to which physical activity attenuates effects of a specific gene variant, FTO, on obesity in adults and children. They report a fairly substantial attenuation by physical activity on the effects of this genetic variant on the risk of obesity in adults.
Background-Vitamin D is crucial for maintaining musculoskeletal health. Recently, vitamin D insufficiency has been linked to a number of extraskeletal disorders, including diabetes, cancer, and cardiovascular disease. Determinants of circulating 25-hydroxyvitamin D (25-OH D) include sun exposure and dietary intake, but its high heritability suggests that genetic determinants may also play a role.Methods-We performed a genome-wide association study of 25-OH D among ∼30,000 individuals of European descent from 15 cohorts. Five cohorts were designated as discovery cohorts (n=16,125), five as in silico replication cohorts (n=9,366), and five as de novo replication * rs2282679 in Framingham, rs4588 in 1958 Birth Cohort (r 2 between SNPs >0.99).
Aims/hypothesis The role of IL-6 in the development of obesity and hepatic insulin resistance is unclear and still the subject of controversy. We aimed to determine whether global deletion of Il6 in mice (Il6 −/− ) results in standard chow-induced and high-fat diet (HFD)-induced obesity, hepatosteatosis, inflammation and insulin resistance. Methods Male, 8-week-old Il6 −/− and littermate control mice were fed a standard chow or HFD for 12 weeks and phenotyped accordingly. Results Il6 −/− mice displayed obesity, hepatosteatosis, liver inflammation and insulin resistance when compared with control mice on a standard chow diet. When fed a HFD, the Il6 −/− and control mice had marked, equivalent gains in body weight, fat mass and ectopic lipid deposition in the liver relative to chow-fed animals. Despite this normalisation, the greater liver inflammation, damage and insulin resistance observed in chow-fed Il6 −/− mice relative to control persisted when both were fed the HFD. Microarray analysis from livers of mice fed a HFD revealed that genes associated with oxidative phosphorylation, the electron transport chain and tricarboxylic acid cycle were uniformly decreased in Il6 −/− relative to control mice. This coincided with reduced maximal activity of the mitochondrial enzyme β-hydroxyacyl-CoA-dehydrogenase and decreased levels of mitochondrial respiratory chain proteins. Conclusions/interpretation Our data suggest that IL-6 deficiency exacerbates HFD-induced hepatic insulin resistance and inflammation, a process that appears to be related to defects in mitochondrial metabolism.
Local administration of human growth hormone in vivo to the cartilage growth plate of the proximal tibia of hypophysectomized rats resulted in accelerated longitudinal bone growth. This finding suggests that growth hormone directly stimulates the cells in the growth plate, and does not support the theory that the increase in the plasma concentration of somatomedin that follows growth hormone administration is the cause of this stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.