Testing and implementation of Human-Robot Collaboration (HRC) could be dangerous due to the high-speed movements and massive forces generated by industrial robots. Wherever humans and industrial robots share a common workplace, accidents are likely to happen and always unpredictable. This has hindered the development of human robot collaborative strategies as well as the ability of authorities to pass regulations on how humans and robots should work together in close proximities. This paper presents the use of a Virtual Reality digital twin of a physical layout as a mechanism to understand human reactions to both predictable and unpredictable robot motions. A set of established metrics as well as a newly developed Kinetic Energy Ratio metric are used to analyse human reactions and validate the effectiveness of the Virtual Reality environment. It is the aim that Virtual Reality digital twins could inform the safe implementation of Human-Robot Collaborative strategies in factories of the future.
This paper reviews the area of combined discrete event simulation (DES) and virtual reality (VR) use within industry. While establishing a state of the art for progress in this area, this paper makes the case for VR DES as the vehicle of choice for complex data analysis through interactive simulation models, highlighting both its advantages and current limitations. This paper reviews active research topics such as VR and DES real-time integration, communication protocols, system design considerations, model validation, and applications of VR and DES. While summarizing future research directions for this technology combination, the case is made for smart factory adoption of VR DES as a new platform for scenario testing and decision making. It is put that in order for VR DES to fully meet the visualization requirements of both Industry 4.0 and Industrial Internet visions of digital manufacturing, further research is required in the areas of lower latency image processing, DES delivery as a service, gesture recognition for VR DES interaction, and linkage of DES to real-time data streams and Big Data sets.
In recent years a step change has been seen in the rate of adoption of Industry 4.0 technologies by manufacturers and industrial organizations alike. This paper discusses the current state of the art in the adoption of industry 4.0 technologies within the construction industry. Increasing complexity in onsite construction projects coupled with the need for higher productivity is leading to increased interest in the potential use of industry 4.0 technologies. This paper discusses the relevance of the following key industry 4.0 technologies to construction: data analytics and artificial intelligence; robotics and automation; buildings information management; sensors and wearables; digital twin and industrial connectivity. Industrial connectivity is a key aspect as it ensures that all Industry 4.0 technologies are interconnected allowing the full benefits to be realized. This paper also presents a research agenda for the adoption of Industry 4.0 technologies within the construction sector; a three-phase use of intelligent assets from the point of manufacture up to after build and a four staged R&D process for the implementation of smart wearables in a digital enhanced construction site.
The UK is home to several major air commercial and transport hubs. As a result, there is a high demand for Maintenance, Repair, and Overhaul (MRO) services to ensure that fleets of aircraft are in airworthy conditions. MRO services currently involve heavy manual labor. This creates bottlenecks, low repeatability, and low productivity. Presented in this paper is an investigation to create an automation cell for the fan-blade reconditioning component of MRO. The design and prototype of the automation cell is presented. Furthermore, a digital twin of the grinding process is developed and used as a tool to explore the required grinding force parameters needed to effectively remove surface material. An integration of a 6-DoF industrial robot with an end-effector grinder and a computer vision system was undertaken. The computer vision system was used for the digitization of the fan-blade surface as well as tracking and guidance of material removal. Our findings reveal that our proposed system can perform material removal, track the state of the fan blade during the reconditioning process and do so within a closed-loop automated robotic work cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.