Background Exposure to uncontrollable stressors often increases anxiety-like behavior in both humans and rodents. In rat, this effect depends upon stress-induced activity within the dorsal raphé nucleus (DRN). However, the role of serotonin in DRN projection regions is largely unknown. The goals of the current study were to 1) determine if DRN activity during a post-stress anxiety test is involved in anxiety-like behavior, 2) assess the effect of uncontrollable stress on extracellular serotonin in the basolateral amygdala during the anxiety test, and 3) determine the role of the serotonin 2C receptor (5-HT2C) in uncontrollable stress-induced anxiety. Method Rats were exposed to tailshocks that were uncontrollable. On the following day anxiety-like behavior was assessed in a JSE test. BLA extracellular serotonin concentrations were assessed during JSE by in vivo microdialysis 24 h after uncontrollable stress, controllable stress or no stress. In separate experiments drugs were administered before the JSE test to inhibit the DRN or to block 5-HT2C receptors. Results Exposure to uncontrollable shock reduced later social exploration. Prior uncontrollable stress potentiated serotonin efflux in the BLA during social exploration, but controllable stress did not. Intra-DRN 8-OH-DPAT and systemic and intra-BLA 5-HT2C receptor antagonist SB 242084 prevented the expression of potentiated anxiety in uncontrollably stressed rats. Intra-BLA injection of the 5-HT2C agonist CP 809101 mimicked the effect of stress. Conclusion These results suggest that the anxiety-like behavior observed after uncontrollable stress is mediated by exaggerated 5-HT acting at BLA 5-HT2C receptors.
Social animals detect the affective states of conspecifics and utilize this information to orchestrate social interactions. In a novel social affective preference text in which experimental adult male rats could interact with either naive or stressed conspecifics, the experimental rats either approached or avoided the stressed conspecific, depending upon the age of the conspecific. Specifically, experimental rats approached stressed juveniles but avoided stressed adults. Inhibition of insular cortex, which is implicated in social cognition, and blockade of insular oxytocin receptors disrupted the social affective behaviors. Oxytocin application increased intrinsic excitability and synaptic efficacy in acute insular cortex slices, and insular oxytocin administration recapitulated the behaviors observed toward stressed conspecifics. Network analysis of Fos immunoreactivity in 29 regions identified functional connectivity between insular cortex, prefrontal cortex, amygdala and the social decision-making network. These results implicate insular cortex as a key component in the circuit underlying age-dependent social responses to stressed conspecifics.
Safety signals are learned cues that predict the non-occurrence of an aversive event. As such, safety signals are potent inhibitors of fear and stress responses. Investigations of safety signal learning have increased over the last few years due in part to the finding that traumatized persons are unable to utilize safety cues to inhibit fear, making it a clinically relevant phenotype. The goal of this review is to present recent advances relating to the neural and behavioral mechanisms of safety learning and expression in rodents, non-human primates and humans.
Fear conditioning and fear extinction play key roles in the development and treatment of anxietyrelated disorders, yet there is little information concerning experiential variables that modulate these processes. Here we examined the impact of exposure to a stressor in a different environment on subsequent fear conditioning and extinction, and whether the degree of behavioral control that the subject has over the stressor is of importance. Rats received a session of either escapable (controllable) tailshock (ES), yoked inescapable (uncontrollable) tailshock (IS), or control treatment (HC) 7 days before fear conditioning in which a tone and footshock were paired. Conditioning was measured 24 h later. In a second experiment rats received ES, IS or HC 24 h after contextual fear conditioning. Extinction then occurred every day beginning 7 days later until a criterion was reached. Spontaneous recovery of fear was assessed 14 days after extinction. IS potentiated fear conditioning when given before fear conditioning, and potentiated fear responding during extinction when given after conditioning. Importantly, ES potently interfered with later fear conditioning, decreased fear responding during fear extinction, and prevented spontaneous recovery of fear. Additionally, we examined if the activation of the ventral medial prefrontal cortex (mPFCv) by ES is critical for the protective effects of ES on later fear conditioning. Inactivation of the mPFCv with muscimol at the time of the initial experience with control prevented ES-induced reductions in later contextual and auditory fear conditioning.Finally, we explored if the protective effects of ES extended to an unconditioned fear stimulus, ferret odor. Unlike conditioned fear, prior ES increased the fear response to ferret odor to the same degree as did IS.Keywords stressor controllability; medial prefrontal cortex; fear conditioning; fear extinction; spontaneous recovery; PTSD The phenomena of Pavlovian fear conditioning and fear extinction have come to be viewed as key processes involved in the development (Mineka and Zinbarg, 2006) and treatment (Rothbaum and Davis, 2003) of anxiety disorders, respectively. In addition to the obvious procedural similarity between fear conditioning/extinction and the conditions that foster Address correspondence to Michael V. Baratta,
Research investigating how control over stressors affects behavior often utilizes freezing and shuttle escape learning as the behavioral endpoints. These endpoints have been argued to reflect anxious or depressed states, but these descriptions are problematic. The present study sought to determine the impact of stressor controllability and the dorsal raphé nucleus (DRN) on sucrose preference and juvenile social exploration, putative measures of anhedonia and anxiety that are commonly used in studies of stress per se. In Experiment 1 rats were exposed to escapable (ES) or yoked-inescapable (IS) tailshocks. In Experiment 2 ES or IS was given 7 days before all rats received IS. In Experiment 3 the DRN was inactivated during IS by microinjection of 8-OH-DPAT. Sucrose preference and social exploration were tested for several days after stress. A fourth experiment confirmed that juvenile social exploration is sensitive to traditional β-carboline and benzodiazepine manipulations. Both ES and IS reduced sucrose preference, but only IS reduced social exploration. Prior treatment with ES prevented the effect of IS on social exploration but did not prevent the effect of IS on sucrose preference and inactivation of the DRN prevented the effect of IS on social exploration but did not change sucrose preference. The present results indicate that social exploration but not sucrose preference is sensitive to prior stressor controllability, and that DRN activation mediates the effect of IS on social exploration. We argue that DRN-5-HT activation mediates a state of generalized anxiety produced by uncontrollable stress and that juvenile social exploration is a useful behavioral endpoint in stressor controllability studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.