For 18 two-wave interovulatory intervals in heifers, the follicular waves were first detected on Days -0.2 +/- 0.1 and 9.6 +/- 0.2, and for 4 three-wave intervals on Days -0.5 +/- 0.3, 9.0 +/- 0.0 and 16.0 +/- 1.1 (ovulation is Day 0). The day-to-day mean diameter profile of the dominant follicle of the 1st wave and the day of emergence of the 2nd wave were not significantly different between 2-wave and 3-wave intervals. There were no indications, therefore, that events occurring during the first half of the interovulatory interval were associated with the later emergence of a 3rd wave. The dominant ovulatory follicle differed significantly (P less than 0.05 at least) between 2-wave and 3-wave intervals in day of emergence (Day 9.6 +/- 0.2 and 16.0 +/- 1.1), length of interval from emergence of follicle to ovulation (10.9 +/- 0.4 and 6.8 +/- 0.6 days), and diameter on day before ovulation (16.5 +/- 0.4 and 13.9 +/- 0.4 mm). The mean length of 2-wave interovulatory intervals (20.4 +/- 0.3 days) was shorter (P less than 0.01) than for 3-wave intervals (22.8 +/- 0.6 days). The mean day of luteal regression for 2-wave and 3-wave intervals was 16.5 +/- 0.4 and 19.2 +/- 0.5 (P less than 0.01). For all intervals, luteal regression occurred after emergence of the ovulatory wave, and the next wave did not emerge until near the day of ovulation at the onset of the subsequent interovulatory interval. In conclusion, the emergence of a 3rd wave was associated with a longer luteal phase, and the viable dominant follicle present at the time of luteolysis became the ovulatory follicle.
The effects of ablation of a dominant follicle and treatment with follicular fluid on circulating concentrations of follicle-stimulating hormone (FSH) were studied and the temporal relationships between surges of FSH and follicular waves were studied in heifers with two or three follicular waves/interovulatory interval. Cauterization of the dominant follicle on Day 3 or Day 5 (ovulation on Day 0) (six control and six treated heifers/day) resulted in a surge (P less than 0.05) in FSH beginning the day after cautery. The FSH surge prior to wave 2 (first post-treatment follicular wave) occurred 4 days (Day 3 cautery) and 2 days (Day 5 cautery) before the surge in control groups, corresponding to a 4-day and a 2-day advance in emergence of wave 2 compared with controls. It was concluded that the dominant follicle on Day 3 and Day 5 was associated with the suppression of circulating FSH concentrations. Heifers (n = 4/group) were untreated or treated intravenously with a proteinaceous fraction of bovine follicular fluid on Days 0-3, 3-6, or 6-11. Concentrations of FSH were suppressed (P less than 0.05) for the duration of treatment, regardless of the days of treatment. Cessation of treatment was followed within 1 day by the start of a surge in FSH. The FSH surge prior to wave 2 occurred 2 days earlier (treatment on Days 0-3), 1 day later (treatment on Days 3-6), and 6 days later (treatment on Days 6-11) than in controls, corresponding to an equivalent advance or delay, respectively, in the emergence of wave 2 compared with controls. The results suggest that the effects of exogenous follicular fluid on follicular development were mediated, in whole or in part, by altering plasma FSH concentrations. Control heifers combined for the two experiments were separated into those with 2-wave (n = 11) or 3-wave (n = 5) interovulatory intervals. Two-wave heifers had two FSH surges and 3-wave heifers had three apparent FSH surges during the interovulatory interval. Results of the cautery and follicular fluid experiments indicated that a surge in FSH necessarily preceded the emergence of a wave. The FSH surges in treated and control heifers began 2-4 days before the detectable (ultrasound) emergence of a follicular wave (follicles of 4 and 5 mm), peaked 1 or 2 days before emergence and began to decrease approximately when the follicles of a wave begin to diverge into a dominant follicle and subordinate follicles (follicles 6-7 mm).
The dairy industry in the developed world has undergone profound changes over recent decades. In this paper, we present an overview of some of the most important recent changes in the dairy industry that affect health and welfare of dairy cows, as well as the science associated with these changes. Additionally, knowledge gaps are identified where research is needed to guide the dairy industry through changes that are occurring now or that we expect will occur in the future. The number of farms has decreased considerably, whereas herd size has increased. As a result, an increasing number of dairy farms depend on hired (nonfamily) labor. Regular professional communication and establishment of farm-specific protocols are essential to minimize human errors and ensure consistency of practices. Average milk production per cow has increased, partly because of improvements in nutrition and management but also because of genetic selection for milk production. Adoption of new technologies (e.g., automated calf feeders, cow activity monitors, and automated milking systems) is accelerating. However, utilization of the data and action lists that these systems generate for health and welfare of livestock is still largely unrealized, and more training of dairy farmers, their employees, and their advisors is necessary. Concurrently, to remain competitive and to preserve their social license to operate, farmers are increasingly required to adopt increased standards for food safety and biosecurity, become less reliant on the use of antimicrobials and hormones, and provide assurances regarding animal welfare. Partly because of increasing herd size but also in response to animal welfare regulations in some countries, the proportion of dairy herds housed in tiestalls has decreased considerably. Although in some countries access to pasture is regulated, in countries that traditionally practiced seasonal grazing, fewer farmers let their dairy cows graze in the summer. The proportion of organic dairy farms has increased globally and, given the pressure to decrease the use of antimicrobials and hormones, conventional farms may be able to learn from well-managed organic farms. The possibilities of using milk for disease diagnostics and monitoring are considerable, and dairy herd improvement associations will continue to expand the number of tests offered to diagnose diseases and pregnancy. Genetic and genomic selection for increased resistance to disease offers substantial potential but requires collection of additional phenotypic data. There is every expectation that changes in the dairy industry will be further accentuated and additional novel technologies and different management practices will be adopted in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.