The emergence of drug-resistant Human Immunodeficiency Virus-1 strains against anti-HIV therapies in the clinical pipeline, and the persistence of HIV in cellular reservoirs remains a significant concern. Therefore, there is a continuous need to discover and develop new, safer, and effective drugs targeting novel sites to combat HIV-1. The fungal species are gaining increasing attention as alternative sources of anti-HIV compounds or immunomodulators that can escape the current barriers to cure. Despite the potential of the fungal kingdom as a source for diverse chemistries that can yield novel HIV therapies, there are few comprehensive reports on the progress made thus far in the search for fungal species with the capacity to produce anti-HIV compounds. This review provides insights into the recent research developments on natural products produced by fungal species, particularly fungal endophytes exhibiting immunomodulatory or anti-HIV activities. In this study, we first explore currently existing therapies for various HIV-1 target sites. Then we assess the various activity assays developed for gauging antiviral activity production from microbial sources since they are crucial in the early screening phases for discovering novel anti-HIV compounds. Finally, we explore fungal secondary metabolites compounds that have been characterized at the structural level and demonstrate their potential as inhibitors of various HIV-1 target sites.
The continuous burden of human immunodeficiency virus-1 in Sub-Saharan Africa, coupled with the inability of antiretroviral agents to eradicate HIV-1 from viral reservoirs, the potential risks of drug resistance development, and the development of adverse effects, emphasizes the need to develop a new class of HIV-1 inhibitors. Here, we cultivated four endophytic fungal isolates from a medicinal plant, Albizia adianthifolia with the addition of small epigenetic modifiers, sodium butyrate, and valproic acid, to induce the expression of biosynthetic gene clusters encoding active secondary metabolites with probable anti-HIV activities. We identified a non-toxic crude extract of the endophytic fungus Penicillium chrysogenum treated with sodium butyrate to possess significantly greater anti-HIV activity than the untreated extracts. Penicillium chrysogenum P03MB2 showed anti-HIV activity with an IC50 of 0.6024 µg/mL compared to untreated fungal crude extract (IC50 5.053 µg/mL) when treated with sodium butyrate. The profile of secondary metabolite compounds from the bioactive, partially purified extracts were identified by gas chromatography-mass spectrometry (GC-MS), and more bioactive compounds were detected in treated P. chrysogenum P03MB2 fractions than in untreated fractions. Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro (13.64%), cyclotrisiloxane, hexamethyl (8.18%), cyclotetrasiloxane, octamethyl (7.23%), cyclopentasiloxane, decamethyl (6.36%), quinoline, 1,2-dihydro-2,24-trimethyl (5.45%), propanenitrile (4.55%), deca-6,9-diene (4.55%), dibutyl phthalate (4.55%), and silane[1,1-dimethyl-2-propenyl)oxy]dimethyl (2.73%) were the most abundant compounds. These results indicate that treatment of endophytic fungi with small epigenetic modifiers enhances the secretion of secondary metabolites with stronger anti-HIV-1 properties, acknowledging the feasibility of epigenetic modification as an innovative approach for the discovery of cryptic fungal metabolites which can be developed into therapeutic compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.