Total gene expression analysis (TOGA) was used to identify genes that are differentially expressed in brain regions between the alcohol-naïve, inbred alcohol-preferring (iP), and -nonpreferring (iNP) rats. ␣-Synuclein, expressed at >2-fold higher levels in the hippocampus of the iP than the iNP rat, was prioritized for further study. In situ hybridization was used to determine specific brain regions and cells expressing ␣-synuclein in the iP and iNP rats. Similar to ␣-synuclein mRNA levels, protein levels in the hippocampus were higher in iP rats than iNP rats. Higher protein levels were also observed in the caudate putamen of iP rats compared with iNP rats. Sequence analysis identified two single nucleotide polymorphisms in the 3 UTR of the cDNA. The polymorphism was used to map the gene, by using recombination-based methods, to chromosome 4, within a quantitative trait locus for alcohol consumption that was identified in the iP and iNP rats. A nucleotide exchange in the iNP 3 UTR reduced expression of the luciferase reporter gene in SK-N-SH neuroblastoma cells. These results suggest that differential expression of the ␣-synuclein gene may contribute to alcohol preference in the iP rats.
Children with Neurofibromatosis type 1 (NF1) are increasingly recognized to have high prevalence of social difficulties and autism spectrum disorders (ASD). We demonstrated selective social learning deficit in mice with deletion of a single Nf1 gene (Nf1+/−), along with greater activation of mitogen activated protein kinase pathway in neurons from amygdala and frontal cortex, structures relevant to social behaviors. The Nf1+/− mice showed aberrant amygdala glutamate/GABA neurotransmission; deficits in long-term potentiation; and specific disruptions in expression of two proteins associated with glutamate and GABA neurotransmission: a disintegrin and metalloprotease domain 22 (ADAM22) and heat shock protein 70 (HSP70), respectively. All of these amygdala disruptions were normalized by co-deletion of p21 protein-activated kinase (Pak1) gene. We also rescued the social behavior deficits in Nf1+/− mice with pharmacological blockade of Pak1 directly in the amygdala. These findings provide novel insights and therapeutic targets for NF1 and ASD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.