The dielectric permittivity and electric breakdown strength of nanocomposites comprising poly(vinylidene fluoride-co-hexafluoro propylene) and phosphonic acid surface-modified BaTiO(3) nanoparticles have been investigated as a function of the volume fraction of nanoparticles. The mode of binding of pentafluorobenzylphosphonic acid on the BaTiO(3) particles was investigated using infrared and (31)P solid-state nuclear magnetic resonance spectroscopy, and the phosphonic acid was found to form well ordered, tightly bound monolayers. The effective permittivity of nanocomposites with low volume fractions (<50%) was in good agreement with standard theoretical models, with a maximum relative permittivity of 35. However, for nanoparticle volume fractions of greater than 50%, the effective permittivity was observed to decrease with increasing nanoparticle volume fraction, and this was correlated with an increase in porosity of the spin-coated nanocomposite films. The dielectric breakdown strength was also found to decrease with increasing volume fraction of the BaTiO(3) nanoparticles, with an abrupt decrease observed around 10% and a gradual decrease for volume fractions of 20-50%. Comparison of these results with model calculations, using statistical particle packing simulations and effective medium theory for the permittivity and breakdown strength, indicates the important roles of nanoparticle percolation and porosity of the nanocomposites on the dielectric properties. The measured energy density at a field strength of 164 V/mum, well below the breakdown strength, increased to a value of 3.2 J/cm(3) as the nanoparticle volume fraction is increased to 50%, roughly in line with the trend of the permittivity. The calculated maximum energy densities indicate maximal extractable energy (7-8 J/cm(3) at 1 kHz) for two different particle volume fractions, as a result of the interplay of the dependencies of permittivity and breakdown strength on volume fraction.
The crystallization from different solvents of homologues of 1,3-diethyl-2-thiobarbituric acid and pdimethylaminobenzene with different lengths of the polymethine bridge between donor and acceptor groups (TB[n]) produced three pairs of polymorphs with the number of CC bonds in the chain n = 1, 3, and 5. The homologues with the shortest (one methine unit) π-conjugated bridge were presented by two concomitant (obtained simultaneously) polymorphs. Bond length alternation values calculated using X-ray data and evaluation using NMR data showed that some homologues possesses a very high hyperpolarizability. It was shown that the increase of polarizability is related to the increase in the length of the π-conjugated bridge that was supported by experimental hyper-Rayleigh scattering data. Density functional theory calculations of HOMO/LUMO molecular energy levels indicated that compounds with a longer π-conjugated bridge have a higher thermal stability.
The title pull–push chromophores, 2-[4-(dimethylamino)benzylidene]-1H-indene-1,3(2H)-dione (ID[1]) and (E)-2-{3-[4-(dimethylamino)phenyl]allylidene}-1H-indene-1,3(2H)-dione (ID[2]), with donor–π-bridge–acceptor structures, are almost planar for the molecule with a short π-bridge (ID[1]) but less planar for the molecule with a longer bridge (ID[2]).
Polymer/ceramic nanocomposites provide a means of combining the high permittivities (εr) of metal oxide nanoparticles with the solution-processability and high dielectric strength of polymeric hosts. Simple mixing of nanoparticles and polymers generally results in poor quality nanocomposites due to the agglomeration of nanoparticles and poor miscibility of nanoparticles with host materials. We have shown that surface modification of metal oxide nanoparticles with phosphonic acid-based ligands affords robust surface modification and improves the processiblity and the quality of the resulting nanocomposites. We report on the use of phosphonic-acid modified barium titanate (BaTiO3, BT) nanoparticles in dielectric nanocomposites and their applications to high-energy-density capacitors and solution-processable high permittivity gate insulators in organic field-effect transistors (OFETs). Surface modification of BT nanoparticles enabled the formation of high quality nanocomposite thin films with ferroelectric polymer hosts such as poly(vinylidene fluoride-co-hexafluoropropylene), P(VDF-HFP), with large volume fractions (up to 50 vol. %), which are potentially useful materials for electrical energy storage. Similarly, the use of phosphonic acid-modified BT nanoparticles in cross-linked poly(4-vinylphenol) (PVP) allowed to form gate insulators for OFETs. High quality nanocomposite thin films at high nanoparticle volume fractions (up to 37 vol. %) with a large capacitance density (∼50 nF/cm2) and a low leakage current (10−8 A/cm2) were obtained. Pentacene-based p-type OFETs using these nanocomposites showed a large on/off current ratio (Ion/off 104 ∼ 106). We will also present the results from a recent experimental and theoretical study where the BT nanoparticle volume fraction was systematically varied in P(VDF-HFP) host, εr = 11, to find the optimum permittivity and dielectric strength, which provided a guideline for the optimization of the volume fraction for achieving maximum energy density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.