Based on a survey questionnaire administered to 1478 R&D labs in the U.S. manufacturing sector in 1994, we find that firms typically protect the profits due to invention with a range of mechanisms, including patents, secrecy, lead time advantages and the use of complementary marketing and manufacturing capabilities. Of these mechanisms, however, patents tend to be the least emphasized by firms in the majority of manufacturing industries, and secrecy and lead time tend to be emphasized most heavily. A comparison of our results with the earlier survey findings of Levin et al. [1987] suggest that patents may be relied upon somewhat more heavily by larger firms now than in the early 1980s. For the protection of product innovations, secrecy now appears to be much more heavily employed across most industries than previously. Our results on the motives to patent indicate that firms patent for reasons that often extend beyond directly profiting from a patented innovation through either its commercialization or licensing. In addition to the prevention of copying, the most prominent motives for patenting include the prevention of rivals from patenting related inventions (i.e., "patent blocking"), the use of patents in negotiations and the prevention of suits. We find that firms commonly patent for different reasons in "discrete" product industries, such as chemicals, versus "complex" product industries, such as telecommunications equipment or semiconductors. In the former, firms appear to use their patents commonly to block the development of substitutes by rivals, and in the latter, firms are much more likely to use patents to force rivals into negotiations.
for the Thyroid Studies Collaboration C ONTROVERSY PERSISTS ON THEindications for screening and threshold levels of thyroidstimulating hormone (TSH) for treatment of subclinical hypothyroidism, 1-3 defined as elevated serum TSH levels with normal thyroxine (T 4 ) concentrations. Because subclinical hypothyroidism has been associated with hypercholesterolemia 4 and atherosclerosis, 5 screening and treatment have been advocated to prevent cardiovascular disease. 3 However, data on the associations with coronary heart disease (CHD) events and mortality are conflicting among several large prospective cohorts. [6][7][8][9] Three recent study-level metaanalyses 10-12 found modestly increased risks for CHD and mortality, but with heterogeneity among individual studies that used different TSH cutoffs, dif-See also Patient Page. CME available online at www.jamaarchivescme.com and questions on p 1392.
In this paper, we use data from the Carnegie Mellon Survey on industrial R&D to evaluate for the U.S. manufacturing sector the influence of "public"(i.e., university and government R&D lab) research on industrial R&D, the role that public research plays in industrial R&D, and the pathways through which that effect is exercised. We find that public research is critical to industrial R&D in a small number of industries and importantly affects industrial R&D across much of the manufacturing sector. Contrary to the notion that university research largely generates new ideas for industrial R&D projects, the survey responses demonstrate that public research both suggests new R&D projects and contributes to the completion of existing projects in roughly equal measure overall. The results also indicate that the key channels through which university research impacts industrial R&D include published papers and reports, public conferences and meetings, informal information exchange, and consulting. We also finnd that, after controlling for industry, the influence of public research on industrial R&D is disproportionately greater for larger firms as well as start-ups.R&D, Innovation, Universities, Spillovers, Start-Ups
Background Data from prospective cohort studies regarding the association between subclinical hyperthyroidism and cardiovascular outcomes are conflicting. We aimed to assess the risks of total and coronary heart disease (CHD) mortality, CHD events, and atrial fibrillation (AF) associated with endogenous subclinical hyperthyroidism among all available large prospective cohorts. Methods Individual data on 52 674 participants were pooled from 10 cohorts. Coronary heart disease events were analyzed in 22 437 participants from 6 cohorts with available data, and incident AF was analyzed in 8711 participants from 5 cohorts. Euthyroidism was defined as thyrotropin level between 0.45 and 4.49 mIU/L and endogenous subclinical hyperthyroidism as thyrotropin level lower than 0.45 mIU/L with normal free thyroxine levels, after excluding those receiving thyroid-altering medications. Results Of 52 674 participants, 2188 (4.2%) had subclinical hyperthyroidism. During follow-up, 8527 participants died (including 1896 from CHD), 3653 of 22 437 had CHD events, and 785 of 8711 developed AF. In age-and sex-adjusted analyses, subclinical hyperthyroidism was associated with increased total mortality (hazard ratio [HR], 1.24, 95% CI, 1.06–1.46), CHD mortality (HR, 1.29; 95% CI, 1.02–1.62), CHD events (HR, 1.21; 95% CI, 0.99–1.46), and AF (HR, 1.68; 95% CI, 1.16–2.43). Risks did not differ significantly by age, sex, or preexisting cardiovascular disease and were similar after further adjustment for cardiovascular risk factors, with attributable risk of 14.5% for total mortality to 41.5% for AF in those with subclinical hyperthyroidism. Risks for CHD mortality and AF (but not other outcomes) were higher for thyrotropin level lower than 0.10 mIU/L compared with thyrotropin level between 0.10 and 0.44 mIU/L (for both, P value for trend, ≤.03). Conclusion Endogenous subclinical hyperthyroidism is associated with increased risks of total, CHD mortality, and incident AF, with highest risks of CHD mortality and AF when thyrotropin level is lower than 0.10 mIU/L.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.