Tumour necrosis factor (TNF) was originally described as a circulating factor that can induce haemorrhagic necrosis of tumours. It is now clear that TNF has many different functions in cancer biology. In addition to causing the death of cancer cells, TNF can activate cancer cell survival and proliferation pathways, trigger inflammatory cell infiltration of tumours and promote angiogenesis and tumour cell migration and invasion. These effects can be explained by the diverse cellular responses TNF can initiate through distinct signal transduction pathways, opening the way for more selective targeting of TNF signalling in cancer therapy.
TNF signals through two distinct receptors, designated TNFR1 and TNFR2, which initiate diverse cellular effects that include cell survival, activation, differentiation, and proliferation and cell death. These cellular responses can promote immunological and inflammatory responses that eradicate infectious agents, but can also lead to local tissue injury at sites of infection and harmful systemic effects. Defining the molecular mechanisms involved in TNF responses, the effects of natural and experimental genetic diversity in TNF signalling and the effects of therapeutic blockade of TNF has increased our understanding of the key role that TNF plays in infectious disease.
The endothelial cell has a remarkable ability for sub-specialisation, adapted to the needs of a variety of vascular beds. The role of developmental programming versus the tissue contextual environment for this specialization is not well understood. Here we describe a hierarchy of expression of HOX genes associated with endothelial cell origin and location. In initial microarray studies, differential gene expression was examined in two endothelial cell lines: blood derived outgrowth endothelial cells (BOECs) and pulmonary artery endothelial cells. This suggested shared and differential patterns of HOX gene expression between the two endothelial lines. For example, this included a cluster on chromosome 2 of HOXD1, HOXD3, HOXD4, HOXD8 and HOXD9 that was expressed at a higher level in BOECs. Quantative PCR confirmed the higher expression of these HOXs in BOECs, a pattern that was shared by a variety of microvascular endothelial cell lines. Subsequently, we analysed publically available microarrays from a variety of adult cell and tissue types using the whole “HOX transcriptome” of all 39 HOX genes. Using hierarchical clustering analysis the HOX transcriptome was able to discriminate endothelial cells from 61 diverse human cell lines of various origins. In a separate publically available microarray dataset of 53 human endothelial cell lines, the HOX transcriptome additionally organized endothelial cells related to their organ or tissue of origin. Human tissue staining for HOXD8 and HOXD9 confirmed endothelial expression and also supported increased microvascular expression of these HOXs. Together these observations suggest a significant involvement of HOX genes in endothelial cell positional identity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.