This paper describes the design, construction, and testing of a biomimetic pectoral (side) fin with actively controlled curvature for UUV propulsion. First, a 3D unsteady computational fluid dynamics (CFD) analysis tool has been adapted to computationally optimize any fin design, followed by a full parametric study based on our findings. Second, this said fin has been constructed, and our working optimized mechanical design is offered. Lastly, we make an experimental vs. computational result comparison for thrust, lift, and flapping moment data -showing that a UUV with this technology can have dramatic improvements in low-speed propulsion and control over traditional thruster methods.
This paper describes the modeling, simulation, and control of a UUV in six degree-of-freedom (6-DOF) motion using two NRL actively controlled-curvature fins. Computational fluid dynamic (CFD) analysis and experimental results are used in modeling the fin as part of the 6-DOF vehicle model. A fuzzy logic proportional-integral-derivative (PID) based control system has been developed to smoothly transition between preprogrammed sets of fin kinematics in order to create a stable and highly maneuverable UUV. Two different approaches to a fuzzy logic PID controller are analyzed: weighted gait combination (WGC), and modification of mean bulk angle bias (MBAB). Advantages and disadvantages of both methods at the vehicle level are discussed. Simulation results show desirable system performance over a wide range of maneuvers.
A method was devised to vector propulsion of a robotic pectoral fin by means of actively controlling fin surface curvature. Separate flapping fin gaits were designed to maximize thrust for each of three different thrust vectors: forward, reverse, and lift. By using weighted combinations of these three pre-determined main gaits, new intermediate hybrid gaits for any desired propulsion vector can be created with smooth transitioning between these gaits. This weighted gait combination (WGC) method is applicable to other difficult-to-model actuators. Both 3D unsteady computational fluid dynamics (CFD) and experimental results are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.