This work demonstrates a computational framework for simulating vaporizing, liquid-gas flows. It is developed for the general vaporization problem [1] which solves the vaporization rate based as from the local thermodynamic equilibrium of the liquid-gas system. This includes the commonly studied vaporization regimes of film boiling and isothermal evaporation. The framework is built upon a Cartesian grid solver for low-Mach, turbulent flows [2] which has been modified to handle multiphase flows with large density ratios [3]. Interface transport is performed using an unsplit volume of fluid solver [4]. A novel, divergence-free extrapolation technique is used to create a velocity field that is suitable for interface transport. Sharp treatments are used for the vapor mass fractions and temperature fields [5]. The pressure Poisson equation is treated using the Ghost Fluid Method [6]. Interface equilibrium at the interface is computed using the Clausius-Clapeyron relation, and is coupled to the flow solver using a monotone, unconditionally stable scheme.It will be shown that correct prediction of the interface properties is fundamental to accurate simulations of the vaporization process. The convergence and accuracy of the proposed numerical framework is verified against solutions in one, two, and three dimensions. The simulations recover first order convergence under temporal and spatial refinement for the general vaporization problem. The work is concluded with a demonstration of unsteady vaporization of a droplet at intermediate Reynolds number.
Motivated by the study of spray combustion, this work addresses the combustion of non-spherical droplets. The combustion of spray is usually understood through the theory of droplet combustion, and improving this latter theory is the narrow aim of this work. The current work uses perturbation theory to derive a novel model for the vaporization of non-spherical droplets. Compared to previous efforts in this area, the work uses a physics-based approach by incorporating ideas from the asymptotic analysis of Taylor and Acrivos [J. Fluid Mech., 1964]. The perturbation strategy expands the droplet shape using spherical harmonics, and the theory characterizes the shape of the droplet via the Weber number. The introduction of this parameter is key as it is a parameter that can be easily measured in experiments, and thus it can be used to connect the theoretical results with application. The perturbation analysis is performed based around the classical solution of spherical droplet combustion in quiescent flow. The theory indicates that the effect of droplet deformation can be accounted for by a correction to the droplet combustion rate that is simple polynomial function of the droplet Weber number. Results are compared to existing literature, and it confirms the established trend that deformed droplets vaporize faster than spherical droplets. Analysis of the flame shape reveals that the flame remains nearly spherical, however, the mean flame standoff changes with droplet shape. The extension of the theory to high Reynolds number conditions is briefly discussed.
He specializes in multiphase thermo-fluid flows. Dr. Palmore's technical research focuses on developing numerical algorithms for simulating these flows using high performance computing. His educational research focuses upon incorporating technology into the classroom. Dr. Palmore is an active member of several professional societies including the American Institute of Aeronautics and Astronautics, the American Society of Mechanical Engineers, the Society for Industrial and Applied Mathematics, and the National Society of Black Engineers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.