1 2 It has long been suggested that hydrothermal systems might have provided habitats for the origin 3 and evolution of early life on Earth, and possibly other planets such as Mars. In this contribution 4 we show that most impact events that result in the formation of complex impact craters (i.e., >2-5 4 and >5-10 km diameter on Earth and Mars, respectively) are potentially capable of generating 6 a hydrothermal system. Consideration of the impact cratering record on Earth suggests that the 7 presence of an impact crater lake is critical for determining the longevity and size of the 8 hydrothermal system. We show that there are six main locations within and around impact 9 craters on Earth where impact-generated hydrothermal deposits can form: 1) crater-fill impact 10 melt rocks and melt-bearing breccias; 2) interior of central uplifts; 3) outer margin of central 11 uplifts; 4) impact ejecta deposits; 5) crater rim region; and 6) post-impact crater lake sediments. 12We suggest that these six locations are applicable to Mars as well. Evidence for impact-13 generated hydrothermal alteration ranges from discrete vugs and veins to pervasive alteration 14 depending on the setting and nature of the system. A variety of hydrothermal minerals have been 15 documented in terrestrial impact structures and these can be grouped into three broad categories: 16(1) hydrothermally-altered target-rock assemblages; (2) primary hydrothermal minerals 17 precipitated from solutions; and (3) secondary assemblages formed by the alteration of primary 18 hydrothermal minerals. Target lithology and the origin of the hydrothermal fluids strongly 19 influences the hydrothermal mineral assemblages formed in these post-impact hydrothermal 20systems. There is a growing body of evidence for impact-generated hydrothermal activity on 21 Mars; although further detailed studies using high-resolution imagery and multispectral 22 information are required. Such studies have only been done in detail for a handful of Martian 23 4 craters. The best example so far is from Toro Crater (Marzo et al., 2010). We also present new 1 evidence for impact-generated hydrothermal deposits within an unnamed ~32-km diameter crater 2 ~ 350 km away from Toro and within the larger Holden Crater. Synthesizing observations of 3 impact craters on Earth and Mars, we suggest that if there was life on Mars early in its history, 4 then hydrothermal deposits associated with impact craters may provide the best, and most 5 numerous, opportunities for finding preserved evidence for life on Mars. Moreover, 6hydrothermally altered and precipitated rocks can provide nutrients and habitats for life long 7 after hydrothermal activity has ceased. 8 5 1
Abstract-The Haughton impact structure has been the focus of systematic, multi-disciplinary field and laboratory research activities over the past several years. Regional geological mapping has refined the sedimentary target stratigraphy and constrained the thickness of the sedimentary sequence at the time of impact to ∼1880 m. New 40 Ar-39 Ar dates place the impact event at ∼39 Ma, in the late Eocene. Haughton has an apparent crater diameter of ∼23 km, with an estimated rim (final crater) diameter of ∼16 km. The structure lacks a central topographic peak or peak ring, which is unusual for craters of this size. Geological mapping and sampling reveals that a series of different impactites are present at Haughton. The volumetrically dominant crater-fill impact melt breccias contain a calciteanhydrite-silicate glass groundmass, all of which have been shown to represent impact-generated melt phases. These impactites are, therefore, stratigraphically and genetically equivalent to coherent impact melt rocks present in craters developed in crystalline targets. The crater-fill impactites provided a heat source that drove a post-impact hydrothermal system. During this time, Haughton would have represented a transient, warm, wet microbial oasis. A subsequent episode of erosion, during which time substantial amounts of impactites were removed, was followed by the deposition of intra-crater lacustrine sediments of the Haughton Formation during the Miocene. Present-day intracrater lakes and ponds preserve a detailed paleoenvironmental record dating back to the last glaciation in the High Arctic. Modern modification of the landscape is dominated by seasonal regional glacial and niveal melting, and local periglacial processes. The impact processing of target materials improved the opportunities for colonization and has provided several present-day habitats suitable for microbial life that otherwise do not exist in the surrounding terrain.
There is abundant evidence for widespread microbial activity in deep continental fractures and aquifers, with important implications for biogeochemical cycling on Earth and the habitability of other planetary bodies. Whitman et al. (P Natl Acad Sci USA, 95, 1998, 6578) estimated a continental subsurface biomass on the order of 10(16) -10(17) g C. We reassess this value in the light of more recent data including over 100 microbial population density measurements from groundwater around the world. Making conservative assumptions about cell carbon content and the ratio of attached and free-living microorganisms, we find that the evidence continues to support a deep continental biomass estimate of 10(16) -10(17) g C, or 2-19% of Earth's total biomass.
Abstract-The well-preserved state and excellent exposure at the 39 Ma Haughton impact structure, 23 km in diameter, allows a clearer picture to be made of the nature and distribution of hydrothermal deposits within mid-size complex impact craters. A moderate-to low-temperature hydrothermal system was generated at Haughton by the interaction of groundwaters with the hot impact melt breccias that filled the interior of the crater. Four distinct settings and styles of hydrothermal mineralization are recognized at Haughton: a) vugs and veins within the impact melt breccias, with an increase in intensity of alteration towards the base; b) cementation of brecciated lithologies in the interior of the central uplift; c) intense veining around the heavily faulted and fractured outer margin of the central uplift; and d) hydrothermal pipe structures or gossans and mineralization along fault surfaces around the faulted crater rim. Each setting is associated with a different suite of hydrothermal minerals that were deposited at different stages in the development of the hydrothermal system. Minor, early quartz precipitation in the impact melt breccias was followed by the deposition of calcite and marcasite within cavities and fractures, plus minor celestite, barite, and fluorite. This occurred at temperatures of at least 200 °C and down to ∼100-120 °C. Hydrothermal circulation through the faulted crater rim with the deposition of calcite, quartz, marcasite, and pyrite, occurred at similar temperatures. Quartz mineralization within breccias of the interior of the central uplift occurred in two distinct episodes (∼250 down to ∼90 °C, and <60 °C). With continued cooling (<90 °C), calcite and quartz were precipitated in vugs and veins within the impact melt breccias. Calcite veining around the outer margin of the central uplift occurred at temperatures of ∼150 °C down to <60 °C. Mobilization of hydrocarbons from the country rocks occurred during formation of the higher temperature calcite veins (>80 °C). Appreciation of the structural features of impact craters has proven to be key to understanding the distribution of hydrothermal deposits at Haughton.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.