JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.. Ecological Society of America is collaborating with JSTOR to digitize, preserve and extend access to Ecology.Abstract. Large-scale changes in climate may have unexpected effects on ecosystems, given the importance of climate as a control over almost all ecosystem attributes and internal feedbacks. Changes in plant community productivity or composition, for example, may alter ecosystem resource dynamics, trophic structures, or disturbance regimes, with subsequent positive or negative feedbacks on the plant community. At northern latitudes, where increases in temperature are expected to be greatest but where plant species diversity is relatively low, climatically mediated changes in species composition or abundance will likely have large ecosystem effects. In this study, we investigated effects of infrared loading and manipulations of water-table elevation on net primary productivity of plant species in bog and fen wetland mesocosms between 1994 and 1997.We removed 27 intact soil monoliths (2.1 m2 surface area, 0.5-0.7 m depth) each from a bog and a fen in northern Minnesota to construct a large mesocosm facility that allows for direct manipulation of climatic variables in a replicated experimental design. The treatment design was a fully crossed factorial with three infrared-loading treatments, three water-table treatments, and two ecosystem types (bogs and fens), with three replicates of all treatment combinations. Overhead infrared lamps caused mean monthly soil temperatures to increase by 1.6-4.1?C at 15-cm depth during the growing season (May-October). In 1996, depths to water table averaged -11, -19, and -26 cm in the bog plots, and 0, -10, and -19 cm in the fen plots.Annual aboveground net primary production (ANPP) of bryophyte, forb, graminoid, and shrub life-forms was determined for the dominant species in the mesocosm plots based on speciesspecific canopy/biomass relationships. Belowground net primary production (BNPP) was estimated using root in-growth cores.Bog and fen communities differed in their response to infrared loading and water-table treatments because of the differential response of life-forms and species characteristic of each community. Along a gradient of increasing water-table elevation, production of bryophytes increased, and production of shrubs decreased in the bog community. Along a similar gradient in the fen community, production of graminoids and forbs increased. Along a gradient of increasing infrared loading in the bog, shrub production increased whereas graminoid production decreased. In the fen, graminoids were most productive at high infrared loading, and forbs were most productive at medium infrared loading. In the bog and fen, BNPP:ANPP ratio...
Under oxygenated conditions, sulfate is relatively non-toxic to aquatic plants. However, in water-saturated soils, which are usually anoxic, sulfate can be reduced to toxic sulfide. Although the direct effects of sulfate and sulfide on the physiology of a few plant species have been studied in some detail, their cumulative effects on a plant's life cycle through inhibition of seed germination, seedling survival, growth, and seed production have been less well studied. We investigated the effect of sulfate and sulfide on the life cycle of wild rice (Zizania palustris L.) in hydroponic solutions and in outdoor mesocosms with sediment from a wild rice lake. In hydroponic solutions, sulfate had no effect on seed germination or juvenile seedling growth and development, but sulfide greatly reduced juvenile seedling growth and development at concentrations greater than 320 μg/L. In outdoor mesocosms, sulfate additions to overlying water increased sulfide production in sediments. Wild rice seedling emergence, seedling survival, biomass growth, viable seed production, and seed mass all declined with sulfate additions and hence sulfide concentrations in sediment. These declines grew steeper during the course of the 5 yr of the mesocosm experiment and wild rice populations became extinct in most tanks with concentrations of 250 mg SO /L or greater in the overlying water. Iron sulfide precipitated on the roots of wild rice plants, especially at high sulfate application rates. These precipitates, or the encroachment of reducing conditions that they indicate, may impede nutrient uptake and be partly responsible for the reduced seed production and viability.
The idea that carnivorous plants capture insects to supply limiting nutrients is often conjectured but rarely tested with fertilization trials or the construction of nutrient budgets. Accordingly, Sarracenia pupurea plants were analyzed for nitrogen and phosphorus after a 4-month fertilization of the pitchers with nitrogen, phosphorus, micronutrients, combinations thereof, and insect material. Neither the number of leaves produced in the same season nor average leaf mass differed significantly between treatments. Nitrogen and phosphorus concentrations were significantly higher in those leaves that received the respective treatments. Plots of concentration versus content indicated that plants were nitrogen and phosphorus limited. A nutrient budget for nitrogen was determined by soil mineralization, insect removal from the pitchers, and rainwater analysis. This budget showed that nitrogen in captured insects is one-tenth the annual plant requirement. However, soil N mineralization is sometimes more than adequate to supply demands were it to be exploited.R&sum& : On accepte gCnCralement l'idte que les plantes carnivores capturent des insectes pour y trouver les nutriments qui limitent leur croissance, mais peu de donnCes viennent dlexpCriences de fertilisation ou de 1'6tablissement de bilans nutritifs. ConsCquemment, l'auteur a effectuC des analyses d'azote et de phosphore, 4 mois aprbs la fertilisation de sarracCnies avec de l'azote, du phosphore, des micronutrients et une combinaison de ces derniers en plus de tissus d'insectes. Ni le nombre de feuilles produites au cours de la mCme saison, ni le poids moyen des feuilles diffkrent significativement entre les traitements. Les teneurs en azote et en phosphore sont significativement plus ClevCes dans les feuilles qui ont r e y ces traitements, respectivement. Un graphique representant les concentrations versus le contenu indique que la croissance des plants Ctait limitCe par l'azote et le phosphore. Une bilan nutritif de l'azote i Ct C constituC en dCterminant la mineralisation Cdaphique, la rCcupCration des insectes dans les rCservoirs foliaires et l'analyse de l'eau de pluie. Ce budget montre que l'azote captC dans les insectes reprCsente un dixibme des besoins annuels de la plante. Cependant, l'azote provenant de la minkralisation est quelques fois plus que suffisant pour les besoins lorsqu'il est exploit&.
Separating plastic from ontogenetic and growth-limiting responses of plants to changes in resource availability can be challenging because there are a total of eight combinations of these three types of responses. These can, however, be uniquely distinguished on plots of root:shoot ratios against total biomass through time. We used this approach to separate ontogenetic, plastic, and growth-limiting responses of wild rice (Zizania palustris L.) to changes in nitrogen, phosphorus, and light availabilities. Relative growth rate was limited primarily by nitrogen but responded to increased light and phosphorus after nitrogen limitations were alleviated. Nitrogen addition increased relative growth rate because it simultaneously increased unit leaf rate, specific leaf area, and leaf weight ratio. Increased light did not change relative growth rate because decreased specific leaf area and leaf weight ratio compensated the increased unit leaf rate. Phosphorus did not change either relative growth rate or its underlying components. Plants responded ontogenetically to increased nitrogen and light availabilities by accelerating their developmental rate, and plastically by decreasing or increasing their root:shoot ratios, respectively. Plants did not respond either ontogenetically or plastically to increased phosphorus availability. Ontogenetic changes in growth can be separated from plastic and growth-limiting responses by plotting root:shoot ratio against total biomass in the context of the eight possible responses identified above, and also by examining how the underlying components of relative growth rate respond.
Microbial sulfate reduction (MSR) in both freshwater and marine ecosystems is a pathway for the decomposition of sedimentary organic matter (OM) after oxygen has been consumed. In experimental freshwater wetland mesocosms, sulfate additions allowed MSR to mineralize OM that would not otherwise have been decomposed. The mineralization of OM by MSR increased surface water concentrations of ecologically important constituents of OM: dissolved inorganic carbon, dissolved organic carbon, phosphorus, nitrogen, total mercury, and methylmercury. Increases in surface water concentrations, except for methylmercury, were in proportion to cumulative sulfate reduction, which was estimated by sulfate loss from the surface water into the sediments. Stoichiometric analysis shows that the increases were less than would be predicted from ratios with carbon in sediment, indicating that there are processes that limit P, N, and Hg mobilization to, or retention in, surface water. The highest sulfate treatment produced high levels of sulfide that retarded the methylation of mercury but simultaneously mobilized sedimentary inorganic mercury into surface water. As a result, the proportion of mercury in the surface water as methylmercury peaked at intermediate pore water sulfide concentrations. The mesocosms have a relatively high ratio of wall and sediment surfaces to the volume of overlying water, perhaps enhancing the removal of nutrients and mercury to periphyton. The presence of wild rice decreased sediment sulfide concentrations by 30%, which was most likely a result of oxygen release from the wild rice roots. An additional consequence of the enhanced MSR was that sulfate additions produced phytotoxic levels of sulfide in sediment pore water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.