This paper examines the development of a data-driven anomaly detection methodology for servo-actuated hydraulic valves installed in a gas turbine fuel delivery system. Degraded operation of these valves is a leading cause of unavailability for gas turbine driven power plants. Nearlyeighty potential features were generated from the limited raw sensors and control system signals through a combination of domain expertise, statistical feature extraction, and insight gains from prior physics-based simulations. Important features were down-selected by examining the behavior of the features using several years of operating data in conjunction with known field failures. Univariate statistical techniques were used to eliminate candidate features with limited capability to distinguish healthy from abnormal operation. A final machine learning model was generated using a process of recursive feature elimination. This paper will also touch on the practical implications of deploying a machine learning model in a real-time production environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.