We introduced previously an on-line resource, RANKPEP that uses position specific scoring matrices (PSSMs) or profiles for the prediction of peptide-MHC class I (MHCI) binding as a basis for CD8 T-cell epitope identification. Here, using PSSMs that are structurally consistent with the binding mode of MHC class II (MHCII) ligands, we have extended RANKPEP to prediction of peptide-MHCII binding and anticipation of CD4 T-cell epitopes. Currently, 88 and 50 different MHCI and MHCII molecules, respectively, can be targeted for peptide binding predictions in RANKPEP. Because appropriate processing of antigenic peptides must occur prior to major histocompatibility complex (MHC) binding, cleavage site prediction methods are important adjuncts for T-cell epitope discovery. Given that the C-terminus of most MHCI-restricted epitopes results from proteasomal cleavage, we have modeled the cleavage site from known MHCI-restricted epitopes using statistical language models. The RANKPEP server now determines whether the Cterminus of any predicted MHCI ligand may result from such proteasomal cleavage. Also implemented is a variability masking function. This feature focuses prediction on conserved rather than highly variable protein segments encoded by infectious genomes, thereby offering identification of invariant T-cell epitopes to thwart mutation as an immune evasion mechanism.
ABSTRACT:Peptides that bind to a given major histocompatibility complex (MHC) molecule share sequence similarity. Therefore, a position specific scoring matrix (PSSM) or profile derived from a set of peptides known to bind to a specific MHC molecule would be a suitable predictor of whether other peptides might bind, thus anticipating possible T-cell epitopes within a protein. In this approach, the binding potential of any peptide sequence (query) to a given MHC molecule is linked to its similarity to a group of aligned peptides known to bind to that MHC, and can be obtained by comparing the query to the PSSM. This article describes the derivation of alignments and profiles from a collection of peptides known to bind a specific MHC, compatible with the structural and molecular basis of the peptide-MHC class I (MHCI) interaction. Moreover, in order to apply these profiles to the prediction of peptide-MHCI binding, we have developed a new search algorithm (RANKPEP) that ranks all possible peptides from an input protein using the PSSM coefficients. The predictive power of the method was evaluated by running RANKPEP on proteins known to bear MHCI K b -and D b -restricted T-cell epitopes. Analysis of the results indicates that Ͼ 80% of these epitopes are among the top 2% of scoring peptides. Prediction of peptide-MHC binding using a variety of MHCI-specific PSSMs is available on line at our RANK-PEP web server (www.mifoundation.org/Tools/rankpep.html). In addition, the RANKPEP server also allows the user to enter additional profiles, making the server a powerful and versatile computational biology benchmark for the prediction of peptide-MHC binding. Human Immunology 63, 701-709 (2002).
The EPIMHC database server is hosted by the Dana-Farber Cancer Institute at the site http://immunax.dfci.harvard.edu/bioinformatics/epimhc/
Concerns that variola viruses might be used as bioweapons have renewed the interest in developing new and safer smallpox vaccines. Variola virus genomes are now widely available, allowing computational characterization of the entire T-cell epitome and the use of such information to develop safe and yet effective vaccines. To this end, we identified 124 proteins shared between various species of pathogenic orthopoxviruses including variola minor and major, monkeypox, cowpox, and vaccinia viruses, and we targeted them for T-cell epitope prediction. We recognized 8,106, and 8,483 unique class I and class II MHC-restricted T-cell epitopes that are shared by all mentioned orthopoxviruses. Subsequently, we developed an immunological resource, EPIPOX, upon the predicted T-cell epitome. EPIPOX is freely available online and it has been designed to facilitate reverse vaccinology. Thus, EPIPOX includes key epitope-focused protein annotations: time point expression, presence of leader and transmembrane signals, and known location on outer membrane structures of the infective viruses. These features can be used to select specific T-cell epitopes suitable for experimental validation restricted by single MHC alleles, as combinations thereof, or by MHC supertypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.