Spinal muscular atrophy (SMA) is a rare, autosomal recessive neuromuscular degenerative disease characterized by loss of spinal cord motor neurons leading to progressive muscle wasting. The most common pathology results from a homozygous disruption in the survival motor neuron 1 (SMN1) gene on chromosome 5q13 via deletion, conversion, or mutation. SMN2 is a near duplicate of SMN1 that can produce full-length SMN mRNA transcripts, but its overall production capability of these mRNA transcripts is lower than that seen in SMN1. This leads to lower levels of functional SMN protein within motor neurons. The FDA approved nusinersen in December 2016 to treat SMA associated with SMN1 gene mutation. It is administered directly to the central nervous system by intrathecal injection. An antisense oligonucleotide (ASO) drug, nusinersen, provides an upcoming and promising treatment option for SMA and represents a novel pharmacological approach with a mechanism of action relevant for other neurodegenerative disorders. Nusinersen begins with four initial loading doses that are followed by three maintenance doses per year. Three major studies (CHERISH, ENDEAR, and NURTURE) have shown to improve motor function in early and late-onset individuals and reduce the chances of ventilator requirements in pre-symptomatic infants. Studies investigating the timing of drug delivery in mouse models of SMA report the best outcomes when drugs are delivered early before any significant motor function is lost. Nusinersen is a novel therapeutic approach with consistent results in all three studies and is proof of the novel concept for treating SMA and other neurodegenerative disorders in the future.
Technological innovation and scientific advances in understanding cancer at the molecular level have accelerated the discovery and development of both diagnostics and therapeutics. Circulating tumor cells (CTCs) and plasma circulating tumor DNA (ctDNA) are non-invasive prognostic markers that have been associated with metastatic and aggressive disease. Both CTCs and ctDNA allow molecular characterization of a tumor that is inaccessible or too risky to biopsy. The analysis of genomic aberrations in both sample types provides insights into drug resistance and can help determine appropriate, targeted cancer treatments. Mutations found in the primary or metastatic tumor can be identified in both CTCs and ctDNA as well as novel mutations that may reflect intratumoral and intermetastatic heterogeneity. When collected and evaluated over an extended period of time, changes in the CTC and/or ctDNA mutational profile can offer guidance into the effectiveness of a treatment, indicate the progression of disease, and detect recurrence of disease earlier. We have performed whole exome sequencing of CTCs and ctDNA from a metastatic triple negative breast cancer (TNBC) patient to better understand the evolution of tumor heterogeneity during therapy. The patient was enrolled in the Intensive Trial of OMics in Cancer clinical Trial (ITOMIC-001) and initially received weekly cisplatin infusions followed by additional targeted therapy. Longitudinal peripheral blood samples were collected over a period of 272 days following enrollment in the clinical trial. CTCs were identified using the AccuCyte-CyteFinder system (RareCyte, Seattle WA). We used next generation sequencing, and computational biology tools to analyze genomic DNA from multiple CTCs, white blood cells (WBCs) and ctDNA from various time points. We observed similar genomic aberrations in both CTCs and ctDNA that could be classified into three groups: a) a static group that remains unchanged during the course of therapy, b) a sample-specific group that is unique to each time point and c) an intermediate group that has variants that are short-lived but are present across multiple time points. Variants identified in the liquid biopsy samples were compared with variants observed in primary breast tumor, metastatic bone marrow tumor and publically available pan-cancer datasets. We then performed meta-analysis on somatic variants to identify changes in affected networks in response to therapy over time. Several key nodes were identified that could rationally have been targeted for therapy using compounds currently in clinical trials. We then compared and combined the perturbed networks obtained from the CTCs and ctDNA to better understand the etiology of TNBC. These studies represent the first step of a synergistic partnership between the genetic information obtained from the analysis of CTCs and ctDNA with innovative health care for patients with metastatic breast cancer. Citation Format: Kellie Howard, Sharon Austin, Fang Yin Lo, Arturo Ramirez, Debbie Boles, John Pruitt, Elisabeth Mahen, Heather Collins, Amanda Leonti, Lindsey Maassel, Christopher Subia, Tuuli Saloranta, Nicole Christopherson, Kerry Deutsch, Jackie Stilwell, Eric Kaldjian, Michael Dorschner, Sibel Blau, Anthony Blau, Marcia Eisenberg, Steven Anderson, Anup Madan. Meta-analysis of genomic aberrations identified in CTCs andctDNA in triple negative breast cancer. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 498.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.