Abstract:The purpose of this review is to objectively evaluate the biochemical and pathophysiological properties of 0.9% saline (henceforth: saline) and to discuss the impact of saline infusion, specifically on systemic acid-base balance and renal hemodynamics. Studies have shown that electrolyte balance, including effects of saline infusion on serum electrolytes, is often poorly understood among practicing physicians and inappropriate saline prescribing can cause increased morbidity and mortality. Large-volume (>2 L) saline infusion in healthy adults induces hyperchloremia which is associated with metabolic acidosis, hyperkalemia, and negative protein balance. Saline overload (80 ml/kg) in rodents can cause intestinal edema and contractile dysfunction associated with activation of sodium-proton exchanger (NHE) and decrease in myosin light chain phosphorylation. Saline infusion can also adversely affect renal hemodynamics. Microperfusion experiments and real-time imaging studies have demonstrated a reduction in renal perfusion and an expansion in kidney volume, compromising O 2 delivery to the renal parenchyma following saline infusion. Clinically, saline infusion for patients post abdominal and cardiovascular surgery is associated with a greater number of adverse effects including more frequent blood product transfusion and bicarbonate therapy, reduced gastric blood flow, delayed recovery of gut function, impaired cardiac contractility in response to inotropes, prolonged hospital stay, and possibly increased mortality. In critically ill patients, saline infusion, compared to balanced fluid infusions, increases the occurrence of acute kidney injury. In summary, saline is a highly acidic fluid. With the exception of saline infusion for patients with hypochloremic metabolic alkalosis and volume depletion due to vomiting or upper gastrointestinal suction, indiscriminate use, especially for acutely ill patients, may cause unnecessary complications and should be avoided. More education regarding saline-related effects and adequate electrolyte management is needed.
Background This study aimed to evaluate short-term and long-term mortalities in a cohort of unselected hospitalized patients with serum sodium concentration ([Na+]) variations within and outside of reference range. Methods All adult patients admitted to the Mayo Clinic, Rochester, MN, USA from January 2011 to December 2013 (n = 147358) were retrospectively screened. Unique patients admitted during the study period were examined. The main exposure was serum [Na+] variation. Outcome measures were hospital and 1-year all-cause mortalities. Results A total of 60944 patients, mean age 63 ± 17 years, were studied. On admission, 17% (n = 10066) and 1.4% (n = 852) had hypo- and hypernatremia, respectively. During the hospital stay, 11044 and 4128 developed hypo- and hypernatremia, respectively, accounting for 52.3 and 82.9% of the total hypo- and hypernatremic patients. Serum [Na+] variations of ≥6 mEq/L occurred in 40.6% (n = 24 740) of the 60 944 patients and were significantly associated with hospital and 1-year mortalities after adjusting potential confounders (including demographics, comorbidities, estimated glomerular filtration rate, admission serum [Na+], number of [Na+] measurements and length of hospital stay). Adjusted odds ratios for hospital and 1-year mortalities increased with increasing [Na+] variations in a dose-dependent manner, from 1.47 to 5.48 (all 95% confidence intervals >1.0). Moreover, in fully adjusted models, [Na+] variations (≥6 mEq/L) within the reference range (135–145 mEq/L) or borderline hypo- or hypernatremia (133–137 and 143–147 mEq/L, respectively) compared with 138–142 mEq/L were associated with increased hospital and 1-year mortalities. Conclusion In hospitalized adults, [Na+] fluctuation (≥6 mEq/L) irrespective of admission [Na+] and borderline hypo- or hypernatremia are independent predictors of progressively increasing short- and long-term mortality burdens.
Airway inflammation is a key aspect of diseases such as asthma. Proinflammatory cytokines such as TNFα mediate the inflammatory response. In various diseases, inflammation leads to endoplasmic reticulum (ER) stress, the accumulation of unfolded proteins, which triggers homeostatic responses to restore normal cellular function. We hypothesized that TNFα triggers ER stress through an increase in reactive oxygen species generation in human airway smooth muscle (hASM) with a downstream effect on mitofusin 2 (Mfn2). In hASM cells isolated from lung specimens incidental to patient surgery, dose- and time-dependent effects of TNFα exposure were assessed. Exposure of hASM to tunicamycin was used as a positive control. Tempol (500 μM) was used as superoxide scavenger. Activation of three ER stress pathways were evaluated by Western blotting: 1) autophosphorylation of inositol-requiring enzyme1 (IRE1α) leading to splicing of X-box binding protein 1 (XBP1); 2) autophosphorylation of protein kinase RNA-like endoplasmic reticulum kinase (PERK) leading to phosphorylation of eukaryotic initiation factor 2α; and 3) translocation and cleavage of activating transcription factor 6 (ATF6). We found that exposure of hASM cells to tunicamycin activated all three ER stress pathways. In contrast, TNFα selectively activated the IRE1α/XBP1 pathway in a dose- and time-dependent fashion. Our results indicate that TNFα does not activate the PERK and ATF6 pathways. Exposure of hASM cells to TNFα also decreased Mfn2 protein expression. Concurrent exposure to TNFα and tempol reversed the effect of TNFα on IRE1α phosphorylation and Mfn2 protein expression. Selective activation of the IRE1α/XBP1 pathway in hASM cells after exposure to TNFα may reflect a unique homeostatic role of this pathway in the inflammatory response of hASM cells.
Acute kidney injury (AKI) is a common clinical syndrome directly related to patient short-term and long-term morbidity and mortality. Over the last decade, the occurrence rate of AKI has been increasing, and there has also been a growing epidemic of chronic kidney diseases (CKD) and end-stage kidney disease (ESRD) linked to severe and repeated episodes of AKIs. The detection and management of AKI are currently far from satisfactory. A large proportion of AKI patients, especially those with preexisting CKD, are at an increased risk of non-resolving AKI and progressing to CKD and ESRD. Proposed pathological processes that contribute to the transition of AKI to CKD and ESRD include severity and frequency of kidney injury, alterations of tubular cell phenotype with cells predominantly in the G2/M phase, interstitial fibrosis and microvascular rarification related to loss of endothelial-pericyte interactions and pericyte dedifferentiation. Innate immune responses, especially dendritic cell responses related to inadequate adenosine receptor (2a)-mediated signals, autophagic insufficiency and renin-angiotensin system activation have also been implicated in the progression of AKI and transitions from AKI to CKD and ESRD. Although promising advances have been made in understanding the pathophysiology of AKI and AKI consequences, much more work needs to be done in developing biomarkers for detecting early kidney injury, prognosticating kidney disease progression and developing strategies to effectively treat AKI and to minimize AKI progression to CKD and ESRD.
The sodium/potassium-ATPase (NKA) is the enzyme that establishes gradients of sodium and potassium across the plasma membrane. NKA activity is tightly regulated for different physiological contexts through interactions with single-span transmembrane peptides, the FXYD proteins. This diverse family of regulators has in common a domain containing a Phe-X-Tyr-Asp (FXYD) motif, two conserved glycines, and one serine residue. In humans, there are seven tissue-specific FXYD proteins that differentially modulate NKA kinetics as appropriate for each system, providing dynamic responsiveness to changing physiological conditions. Our understanding of how FXYD proteins contribute to homeostasis has benefitted from recent advances described in this review: biochemical and biophysical studies have provided insight into regulatory mechanisms, genetic models have uncovered remarkable complexity of FXYD function in integrated physiological systems, new posttranslational modifications have been identified, high-resolution structural studies have revealed new details of the regulatory interaction with NKA, and new clinical correlations have been uncovered. In this review, we address the structural determinants of diverse FXYD functions and the special roles of FXYDs in various physiological systems. We also discuss the possible roles of FXYDs in protein trafficking and regulation of non-NKA targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.